Spring 2014 Immunology 206A
Assignment \#3: statistics (due Monday, May $5^{\text {th }}$)
The goal of the assignment is to get a working familiarity of the groups of related statistical tests that can be used to common data questions ("Are my populations different?" "Are my variables correlated?"), and practical exposure to how to implement these tests in R. When working with Big Data, being able to perform a stat many times is a common activity. We'll discuss some of the compensatory measures one needs to take when performing multiple hypothesis testing.

As with the previous assignments, we'll be dividing the different methods out into the class, and you are responsible for teaching your fellow students about the statistical instruments you have been assigned (when it is appropriate, when it is not appropriate), as well as providing working code examples on how to run the test in R. Here's a nice resource from our friends in field biology as a refresher:

http://udel.edu/~mcdonald/statbigchart.html

In addition to the statistical tests, the assignment will include introductory examples of how to simulate hypotheses in R, and some practical examples of how to keep your code organized by building libraries of functions in R. We've built two example functions for you: Dice() and LoadedDice(). You'll find the code
http://www.stanford.edu/class/immunol206a/assignment3-simulator.R http://www.stanford.edu/class/immunol206a/assignment3-library.R

Again, the code is expected to follow the general format for previous assignments: include your name, comments, command-line active on an input file of data to produce output statistical summaries. Take a look through the previous assignments and adopt techniques that other classmates have applied to make their code as usable as possible.

Assignments for each course member are shown below. You have each been assigned one test per category. For most tests, two or more people have been assigned your test as well. You are welcome to collaborate with them to save time.

	Descriptive
Marta	median
Erika	confidence interval
Grace	standard deviation
Marvin	mean
Zina	variance
Miriam	range
Winn	standard error
Cesar	median
Eden	confidence interval
Jonathan	standard deviation
Theo	mean
Winn	variance

Test of Effect	$\underline{\text { Goodness of Fit }}$
one-way anova, model II	g-test
nested anova	exact test
two-way anova	randomization
unpaired t-test	chi-squared
one-way anova, model I	exact test
paired t-test	Chi-squared
nested anova	randomization
two-way anova	g-test
unpaired t-test	randomization
paired t-test	exact test
receiver-operator curve	Chi-squared
Kaplan-Meyer survival curve	g-test

Independence
g-test of independence
chi-square test of indepdence
g-test of independence
fisher's exact test
randomization test of indepdence
chi-square test of indepdence
cochran-mantel-haenzel test
randomization test of indepdence
fisher's exact test
g-test of independence
cochran-mantel-haenzel test
chi-square test of indepdence

Correlation

multiple regression analysis of covariance Linear regression polynomial regression
sign test
Spearman rank Pearson
Spearman rank Linear regression polynomial regression analysis of covariance Kruskal-Wallis test

