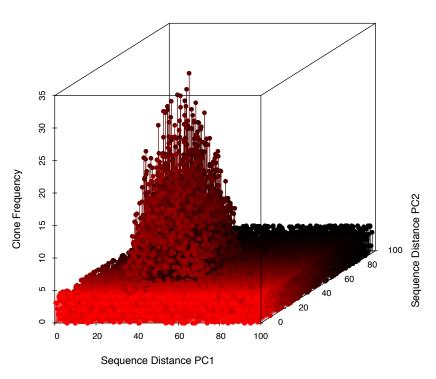
Adaptive repertoires

Jacob Glanville

Clone Frequency Landscape

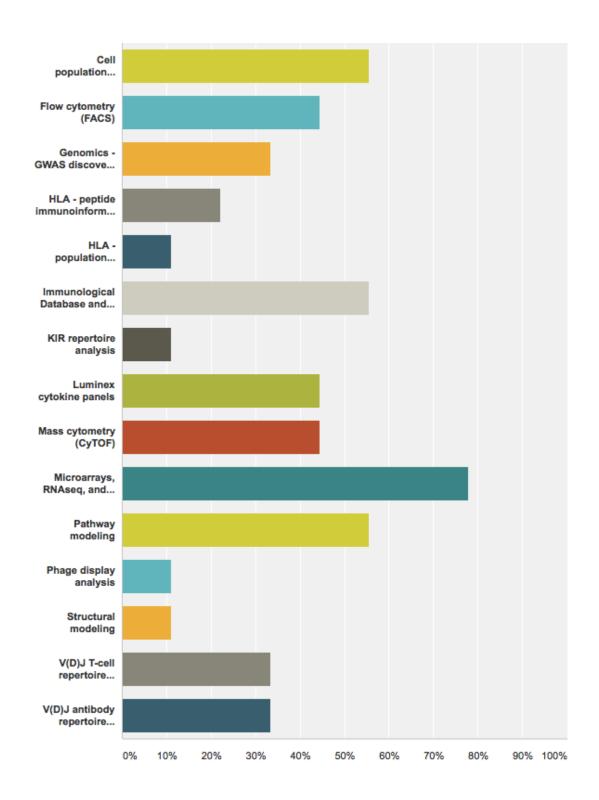


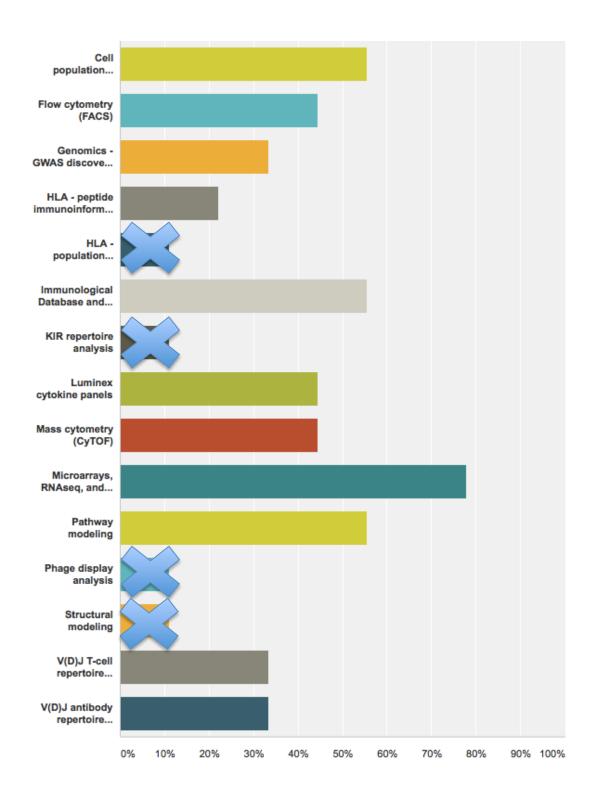
Wednesday format:

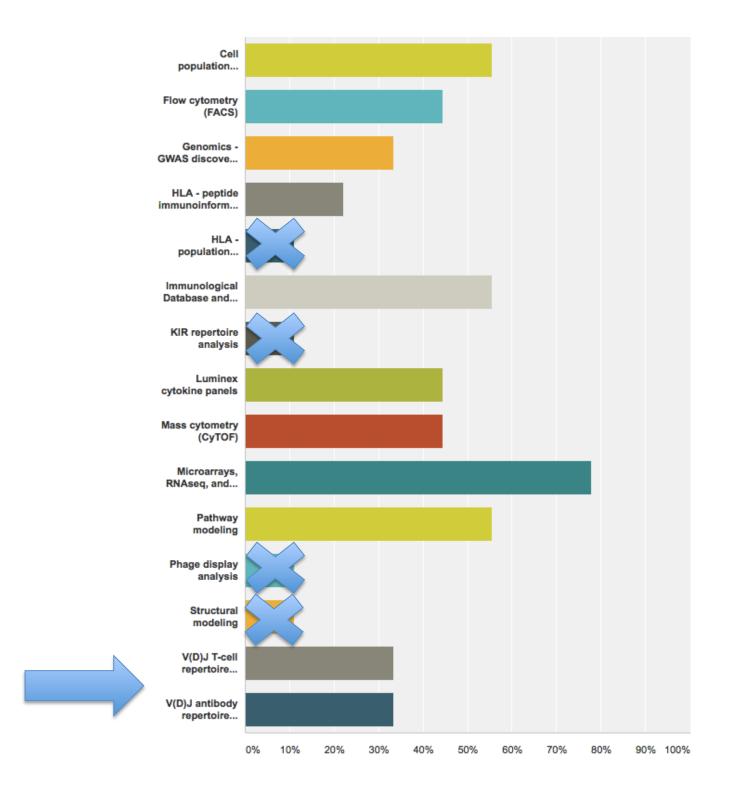
Applied Methods Lecture (30–60 minutes)

Code review

Round-table discussion







UC Berkeley Molecular and Cell Biology BA program

Genetic Genomics Development

Thomson Population Genetics Lab

Sjolander Berkeley Phylogenomics Lab

Pfizer Inc. Principal Scientist

Algorithm Development

Antibody engineering

Repertoire sequencing

Antibody library design

Precision medicine biomarker discovery

Distributed Bio Chief Science Officer

Cloud-based repertoire analysis platforms

High throughput sequencing algorithms

Bioengineering applications

Stanford Immunology PhD program

Computational and Systems Immunology

Mark Davis Lab

Scott Boyd Lab

Title / Author

Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire

J Glanville, W Zhai, J Berka, D Telman, G Huerta, GR Mehta, I Ni, L Mei, ... Proceedings of the National Academy of Sciences 106 (48), 20216-20221

Berkeley Phylogenomics Group web servers: resources for structural phylogenomic analysis

JG Glanville, D Kirshner, N Krishnamurthy, K Sjölander Nucleic acids research 35 (suppl 2), W27-W32

Synthetic antibodies designed on natural sequence landscapes

W Zhai, J Glanville, M Fuhrmann, L Mei, I Ni, PD Sundar, T Van Blarcom, ... Journal of molecular biology 412 (1), 55-71

Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation

J Glanville, TC Kuo, HC von Büdingen, L Guey, J Berka, PD Sundar, ... Proceedings of the National Academy of Sciences 108 (50), 20066-20071

HC von Büdingen, TC Kuo, M Sirota, CJ van Belle, L Apeltsin, J Glanville, ...

The Journal of clinical investigation 122 (12), 4533



CM Mahon, MA Lambert, J Glanville, JM Wade, BJ Fennell, MR Krebs, ... Journal of molecular biology 425 (10), 1712-1730

The restricted DH gene reading frame usage in the expressed human antibody repertoire is selected based upon its amino acid content

J Benichou, J Glanville, ETL Prak, R Azran, TC Kuo, J Pons, C Desmarais, ... The Journal of Immunology 190 (11), 5567-5577

Dietary gluten triggers concomitant activation of CD4+ and CD8+ $\alpha\beta$ T cells and $v\delta$ T cells in celiac disease

A Han, EW Newell, J Glanville, N Fernandez-Becker, C Khosla, Y Chien, ... Proceedings of the National Academy of Sciences 110 (32), 13073-13078

The antibody mining toolbox: An open source tool for the rapid analysis of antibody repertoires

S D'Angelo, J Glanville, F Ferrara, L Naranjo, CD Gleasner, X Shen, ... mAbs 6 (1), 160-172

Multi step selection in Ig H chains is initially focused on CDR3 and then on other CDR regions

G Liberman, J Benichou, L Tsaban, J Glanville, Y Louzoun Frontiers in immunology 4

Estimate of Within Population Incremental Selection Through Branch Imbalance

The antibody mining toolbox

S D'angelo, J Glanville, F Ferrara, L Naranjo, CD Gleasner, X Shen, ...

Staphylococcus aureus specific antibodies and uses thereof

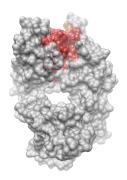
DL Foletti, JFC Riggers, JEG Glanville, LMB Shaughnessy, DL Shelton, ... US Patent App. 13/719,214

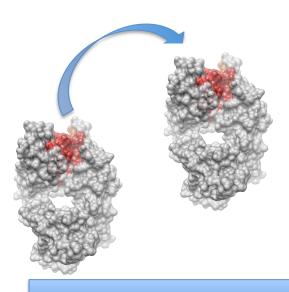
ANTI-NOTCH-1 ANTIBODIES

A RAJPAL, DM STONE, JEG GLANVILLE, W ZHAI

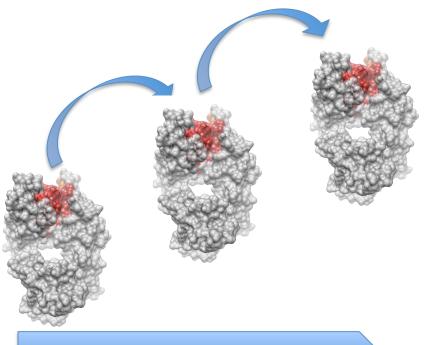
WO Patent 2,012,080,891

Adaptive repertoires



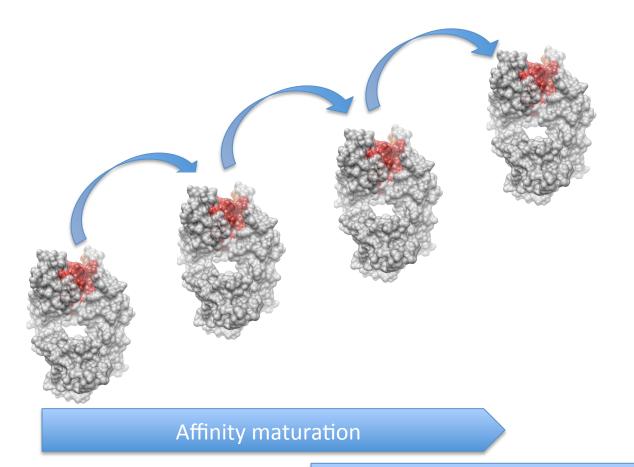


Affinity maturation

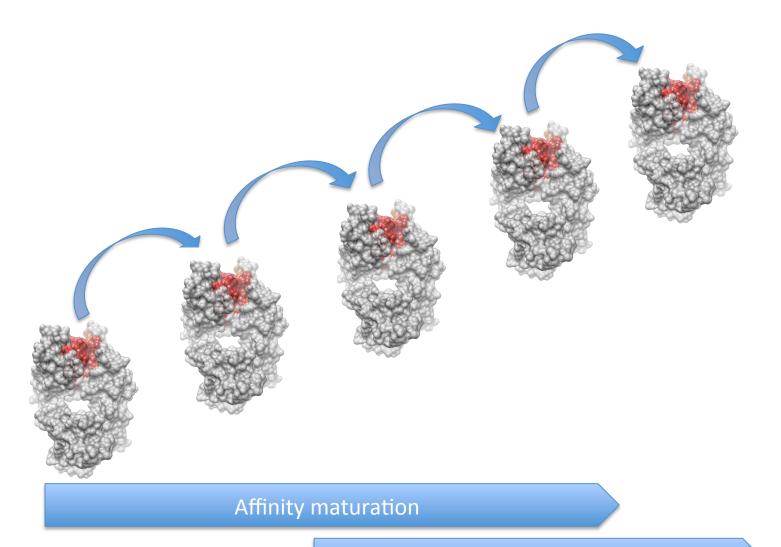


Affinity maturation

Biochemical liability elimination

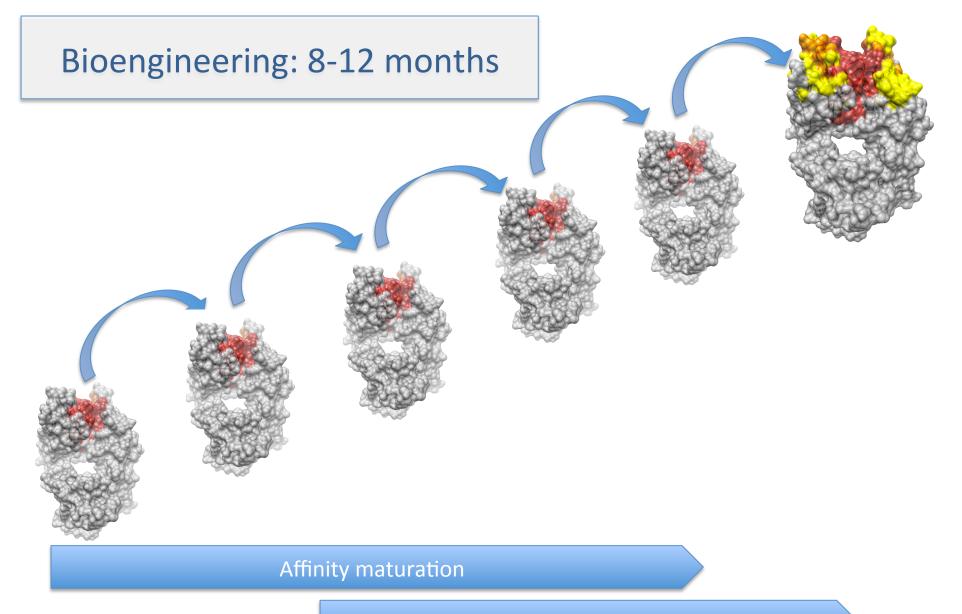


Biochemical liability elimination



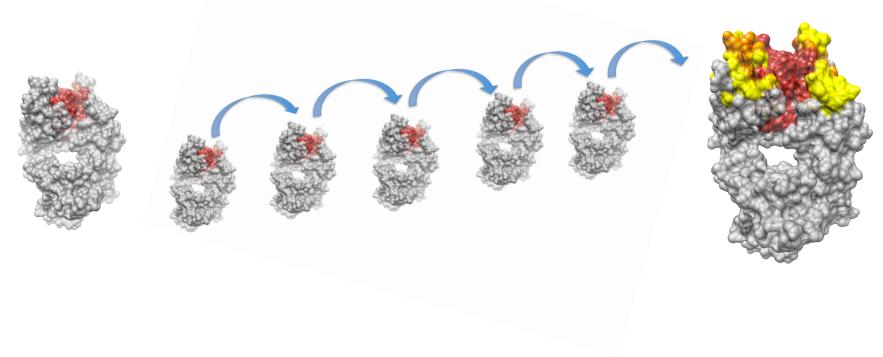
Biochemical liability elimination

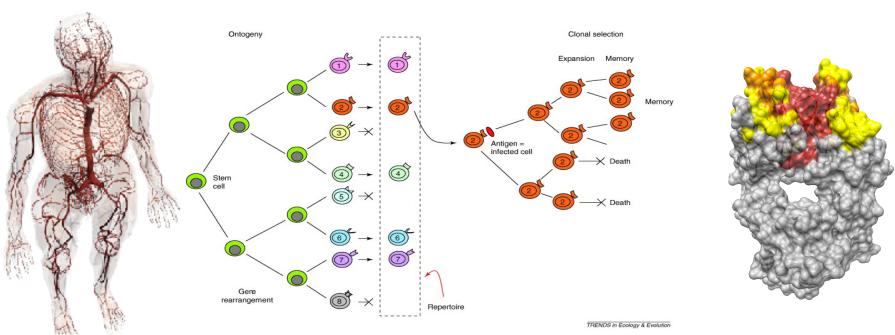
Off-target binding removal

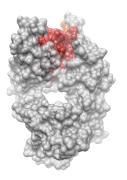


Biochemical liability elimination

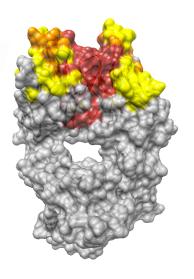
Off-target binding removal

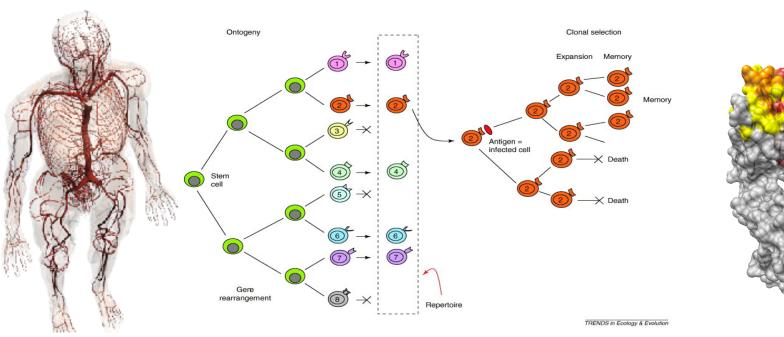


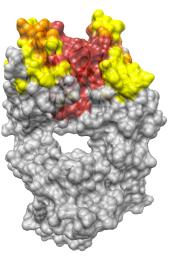


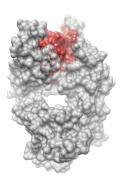


Bioengineering: 8-12 months

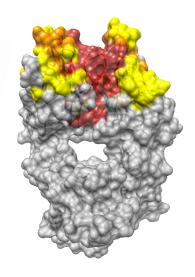


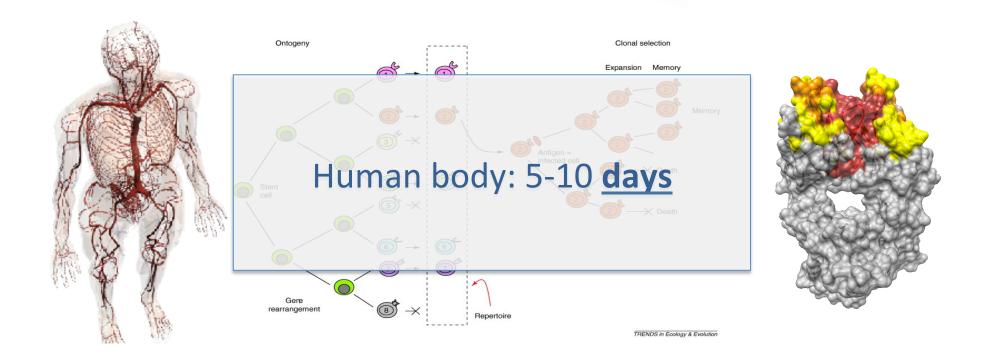


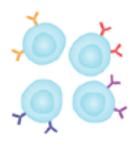




Bioengineering: 8-12 months

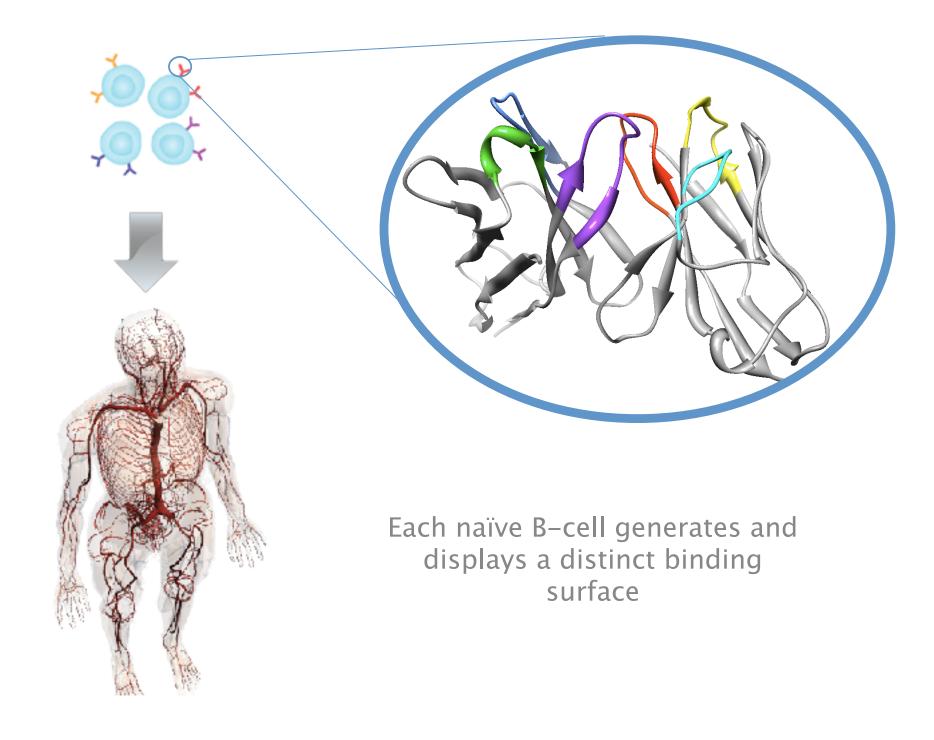


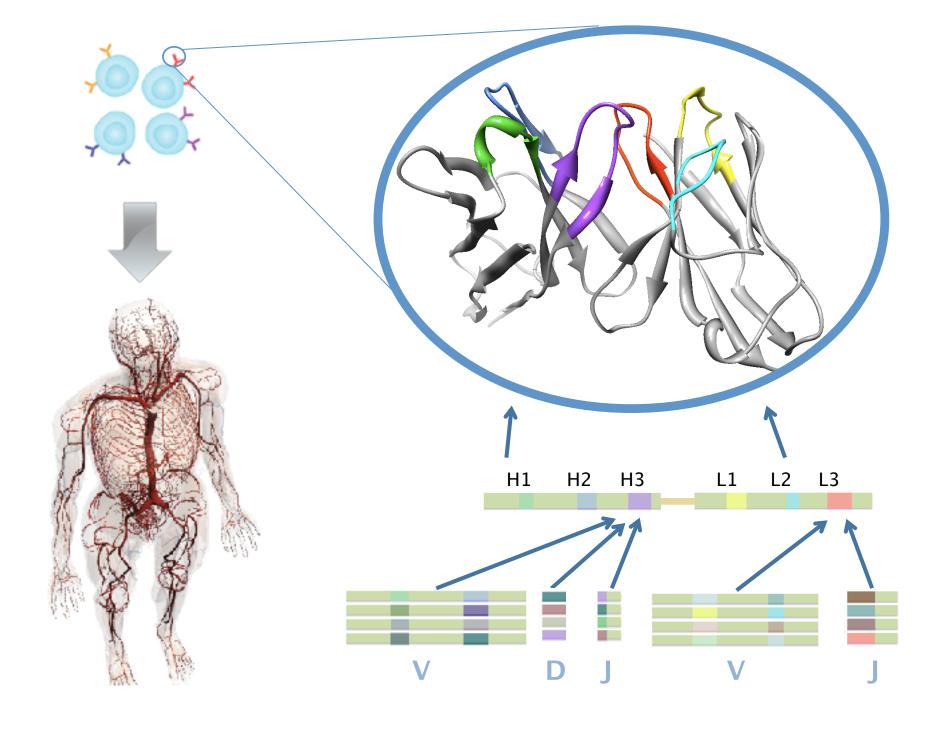


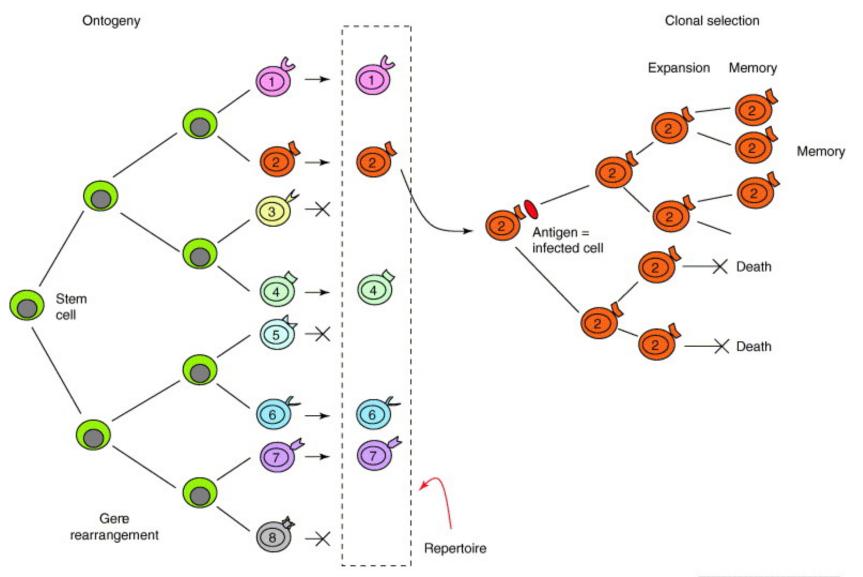


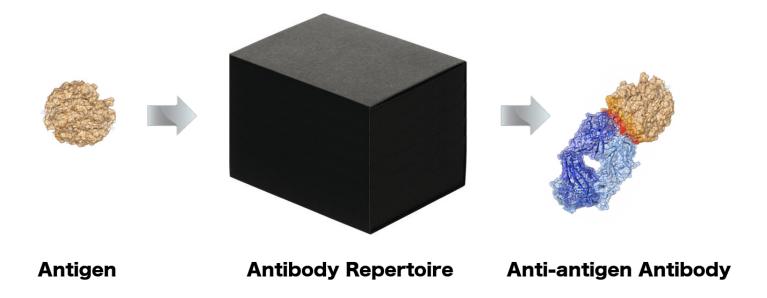


A population of distinct antibodies with a variety of binding specificities



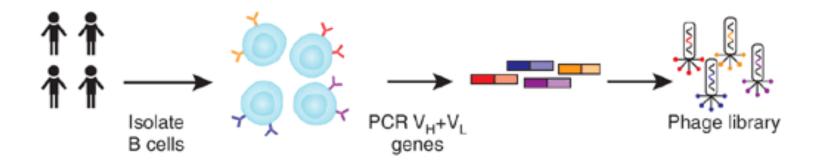




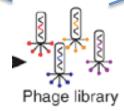


654 human donors

35 billion transformants



 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **
 **< رِهُ، رَهُ،
 Image: The control of the co



نِهُ، نَهُ، نِهُ، نَهُ، نِهُ، نَهُ، نِهُ، نَهُ، رِهُ، رَهُ،
 Image: The contract of the contract of

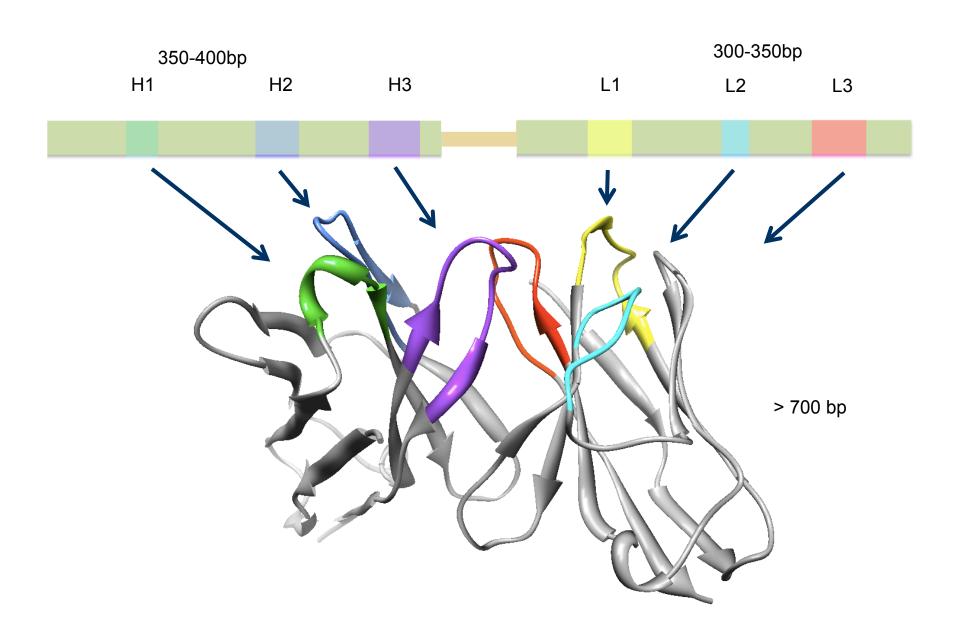
10-200 hits +/- 100nM

100-300 hits < 1nM

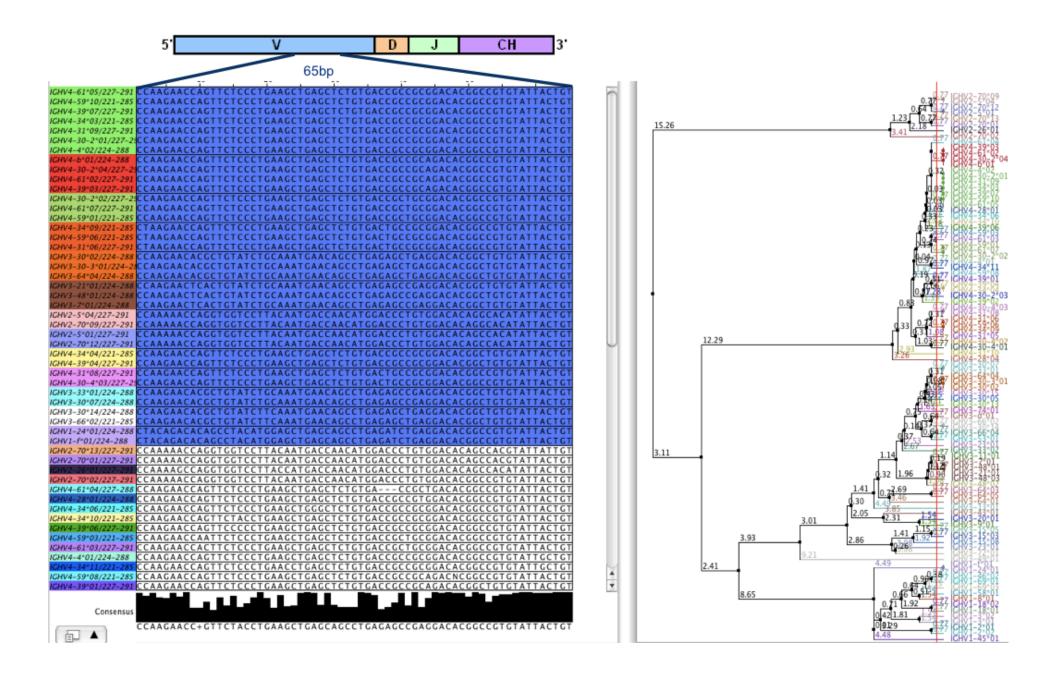
A spleen

Sequencing Repertoires

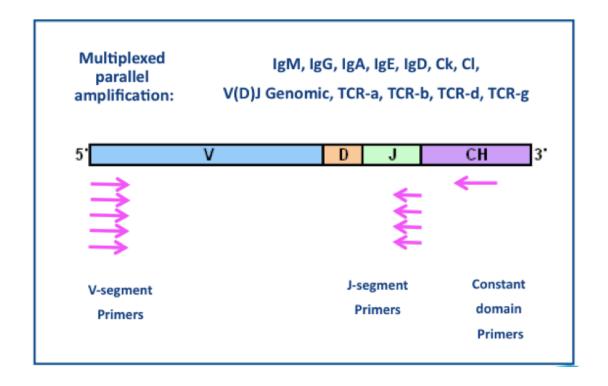
Amplifying repertoires from a synthetic library



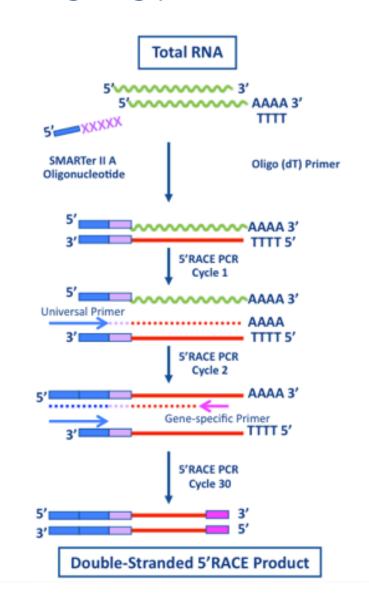
Require long reads without assembly



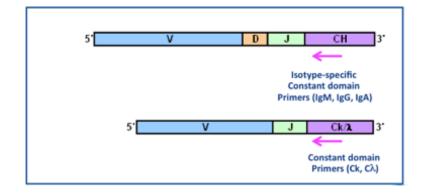
Multiplex primer design & primer bias



Mitigating primer bias with 5 'RACE



- Singleplex 5'RACE PCR reaction setup for each constant domain primer
- 5'RACE products gel-purified and pooled for high-throughput sequencing
 - Eliminates primer performance bias



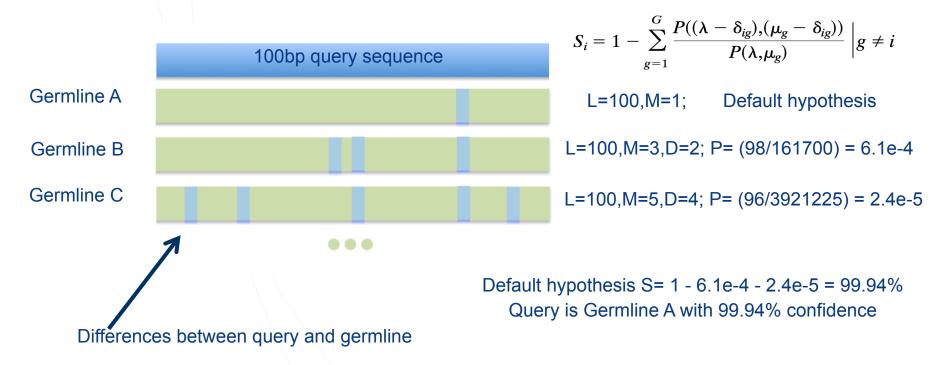
Glanville et al, PNAS 2011

http://www.immunocode.org/immunol-310-3-antibody-repertoire-analysis/

VDJFasta

Avoiding germline mis-classification

Ask "what are the odds that mutations in very specific positions would cause me to erroneously classify this sequence?"



Germline classification accuracy

Table S4. V(D)J classification accuracy benchmark: V segements

Mutations	V-seg (%)	V-seg errors (%)
1	100	0.00
5	100	0.00
10	100	0.00
15	100	0.00
20	100	0.00
25	99.9	0.01
30	99.8	0.02

V segments are classified by VDJFasta probabilistic classifier (1). This table illustrates the percentage of accuracy in v-segment classification (column 2) and error (column 3) with variable number of mutations in the v-gene (column 1). Classification quality was determined by simulating V(D)J rearrangements, simulating substitutions in the IMGT germ-line reference sequences, and then attempting classification. Classification was accurate if the correct germ line was identified. Classification was in error when the wrong germ line was classified. Classification was "ambiguous" when the correct germ line could not be determined with confidence. Erroneous classification remained below 0.3% for all simulations, indicating that sequences could be underclassified, but were rarely being incorrectly classified. Simulations were performed in the VDJFasta tool "fasta-vdj-sim.pl." Parameters for V were as follows: expectation value cutoff 1e-10, 1e-2, 1e-3, 1e-4; ambiguous-hit score (1) 1e-3,1e-1,1e-3,1e-3; minimum segment alignment length (1) 100, 8, 35, 30.

Table S5. V(D)J classification accuracy benchmark: D and J segments

Mutations	D-seg (%)	J-seg (%)	D-seg errors (%)	J-seg errors (%)
0	96.3	100	0.21	0.00
1	92.9	99.9	0.13	0.00
2	78.1	99.7	0.34	0.00
3	62.9	99.6	0.24	0.00
4	56.2	99.0	0.17	0.02
5	47.8	98.5	0.23	0.09
6	36.5	96.9	0.27	0.22

V(D)J segments are classified by VDJFasta probabilistic classifier (1). This table illustrates the percentage of accuracy in D- and J-segment classification (column 2 and 3) and error (column 3 and 4) with variable number of mutations in each gene segment (column 1). D-segment classification additionally requires that both a VH and JH segment have been identified, and that the putative D-segment classification is found between them on the sequence, with up to 8-bp overlap tolerated to account for overalignment of segments to the query. Classification quality was determined by simulating V(D)J rearrangements, simulating substitutions in IMGT germ-line reference sequences, and then attempting classification. Classification was accurate if the correct germ line was identified. Classification was in error when the wrong germ line was classified. Classification was "ambiguous" when the correct germ line could not be determined with confidence. Ambiguous classification rates increased rapidly for D-segments as more SHM was introduced, suggesting that D-segment analysis in antigen-experienced compartments would be challenging. Erroneous classification remained below 0.3% for all simulations, indicating that sequences could be underclassified, but were rarely being incorrectly classified. Simulations were performed in the VDJFasta tool "fasta-vdj-sim.pl." Parameters for D and J, CH1 were as follows: expectation value cutoff 1e-10, 1e-2, 1e-3, 1e-4; ambiguous-hit score (1) 1e-3,1e-1,1e-3,1e-3; minimum segment alignment length (1) 100, 8, 35, 30.

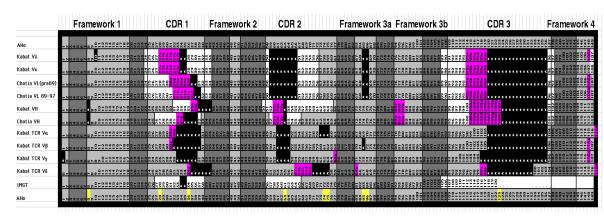
CDR recognition with profile HMMs

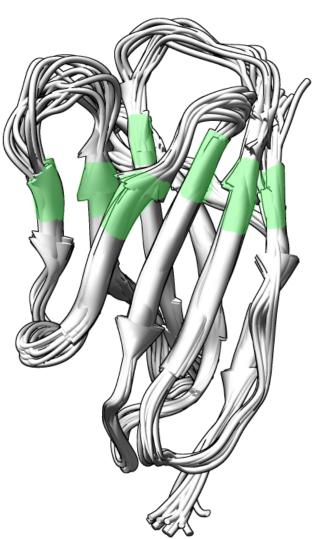
HMM CDR recognition was evaluated structurally

- ▶779 non-redundant structures were superposed
- ▶ Sequences of references structures were extracted
- ▶ Reference structure sequences were aligned to HMM
- ► HMM-Predicted boundary positions were compared to structure

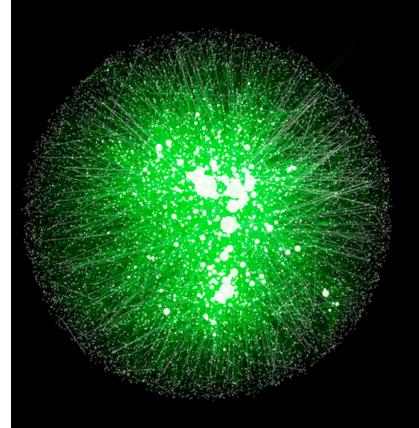
HMM CDR recognition was highly accurate

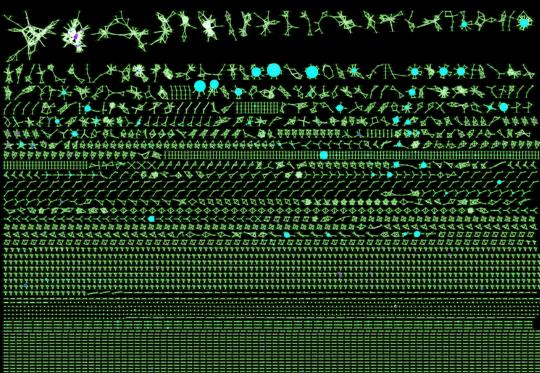
- ▶99.74% boundary recognition success
- ▶ Two miscalls were both in C-terminal H3
- ▶ One was a catalytic antibody





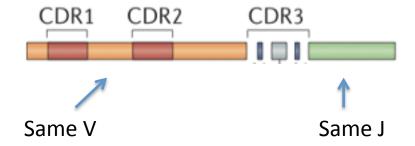
Glanville et al, PNAS 2009



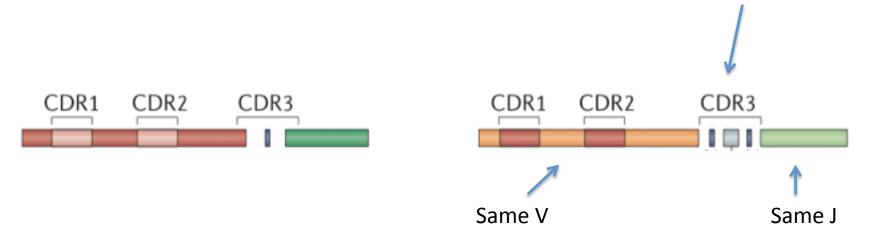


Repertoire --> Clonal lineages

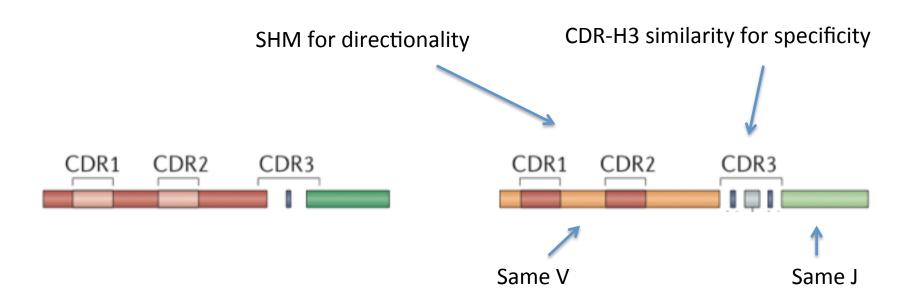
Can we do something smarter than alignment distance?

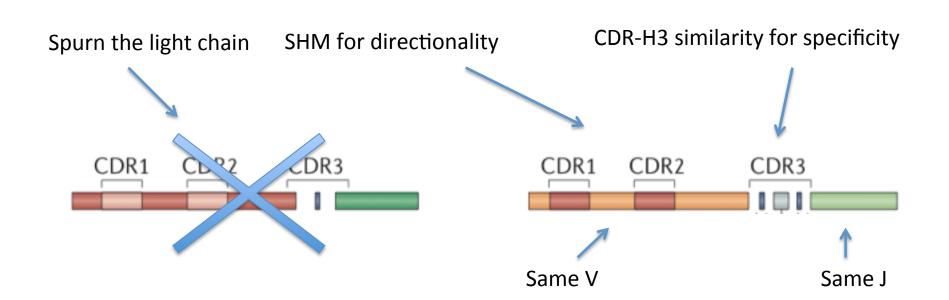


CDR-H3 similarity for specificity

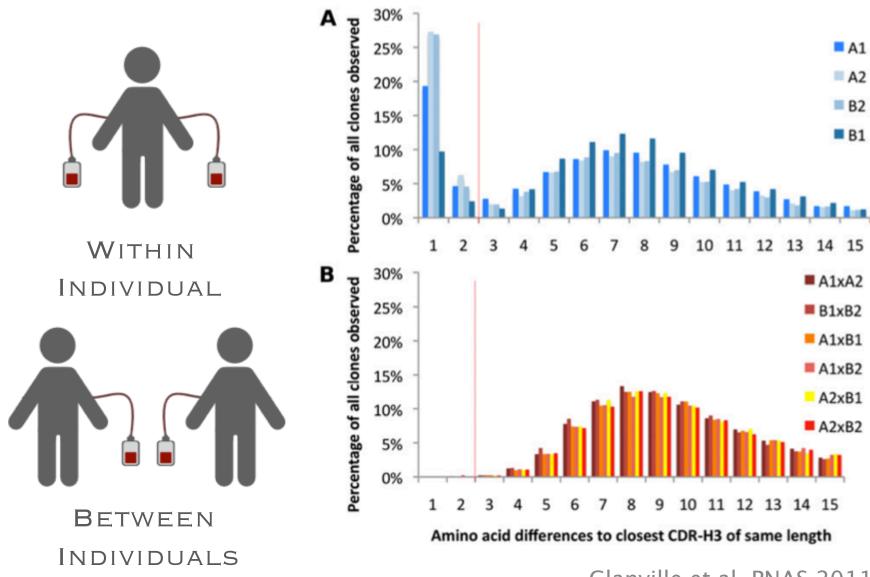


Xu, John L., and Mark M. Davis. "Diversity in the CDR3 Region of VH Is Sufficient for Most Antibody Specificities." *Immunity* 13.1 (2000): 37-45.



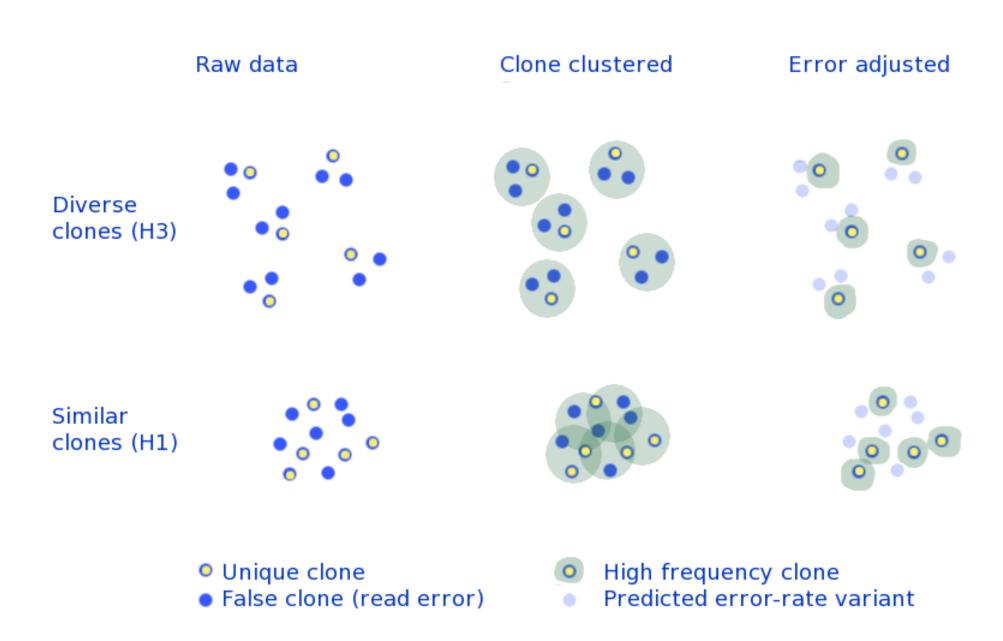


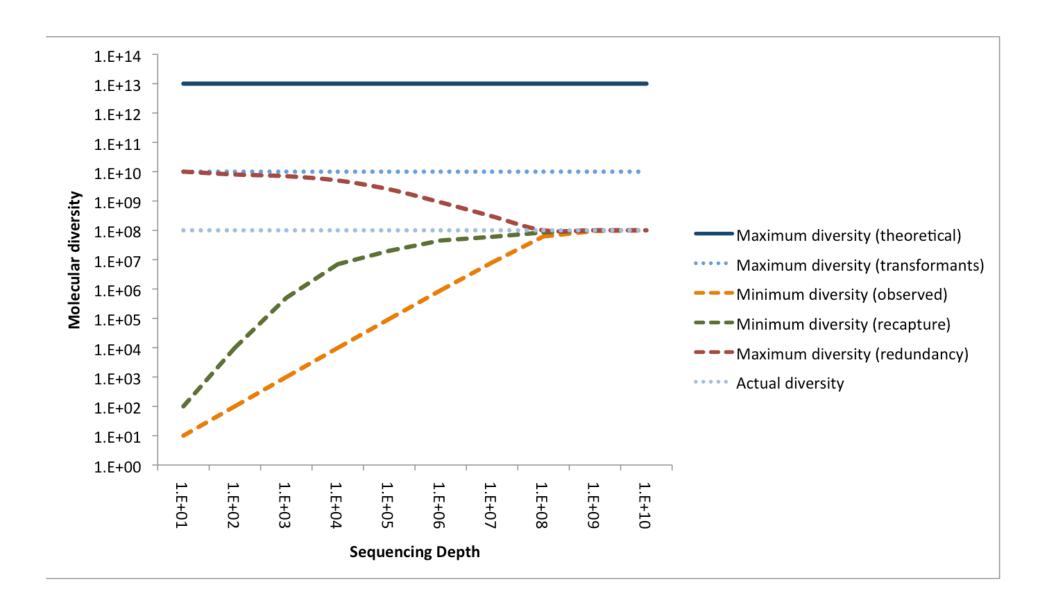
Empirical clone distance cutoff determination



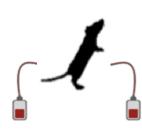
Glanville et al, PNAS 2011

Clone clustering and error clustering





	10^14	Theoretical IgH naïve V(D)J repertoire
	10^13	
	10^12	
	10^11	
	10^10	
	10^9	
	10^8	Total B-cells in a mouse
	10^7	Unique clones in a mouse
)	10^6	omque ciones in a mouse
	10^5	



Individual adults only sample a small part of the antibody repertoire

10^14 10^13

Theoretical IgH naïve V(D)J repertoire

10^12

Total B-cells in an adult 10^11

10^10

10^9

10^8

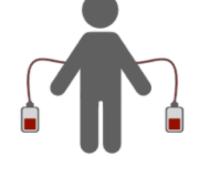
10^7

Non-redundant PBMC Naïve clones/adult

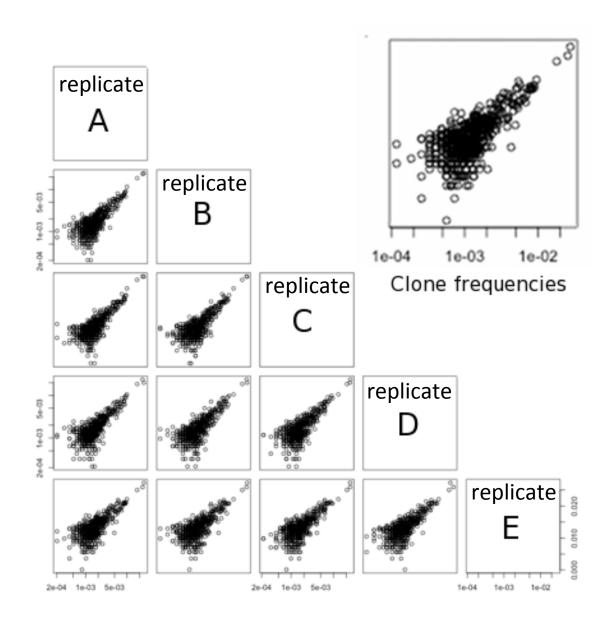
10^6

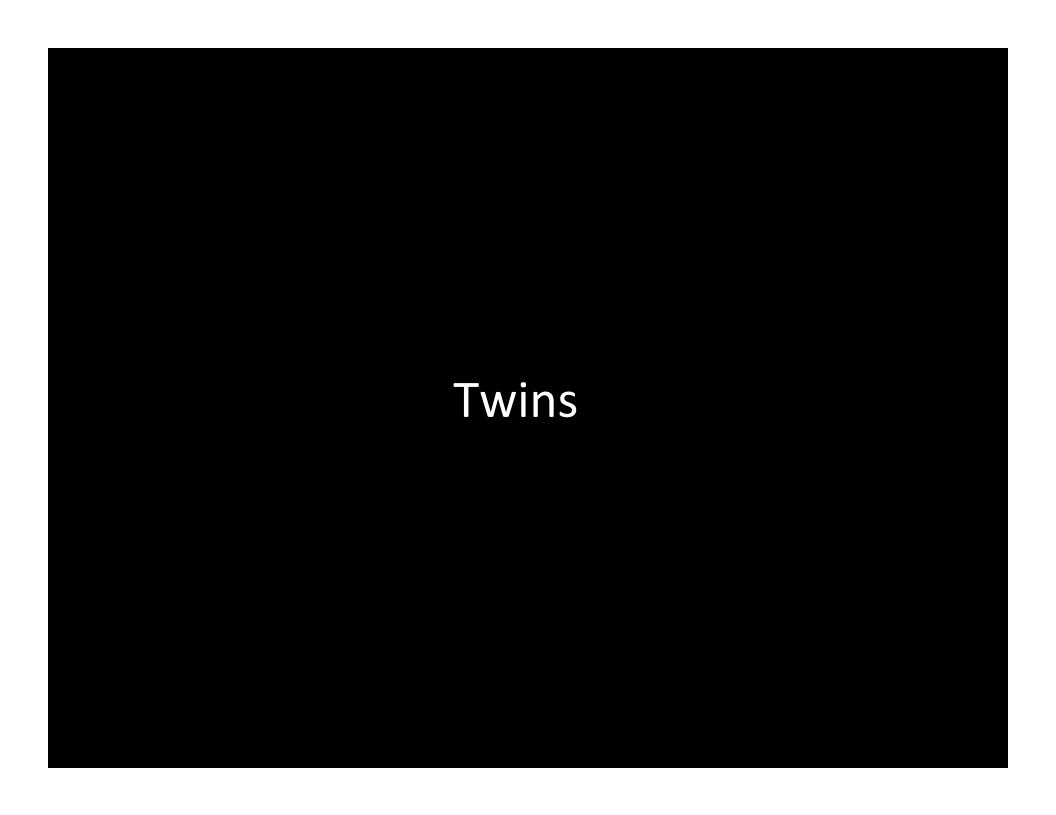
10^5

Non-redundant PBMC IgG clones/adult

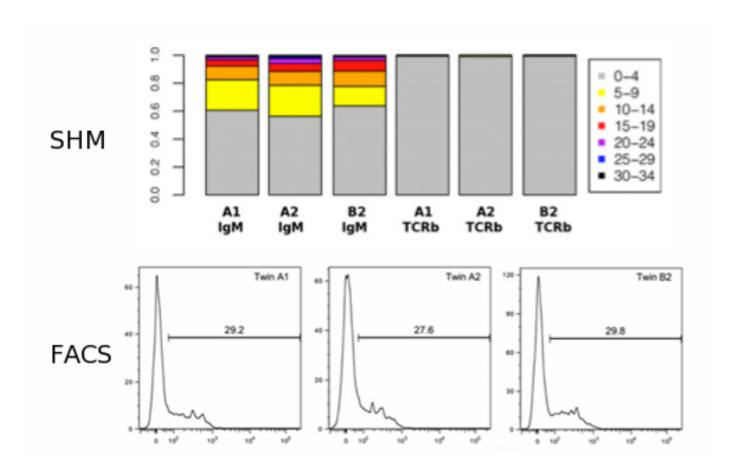


Redundant clones constrain library diversity

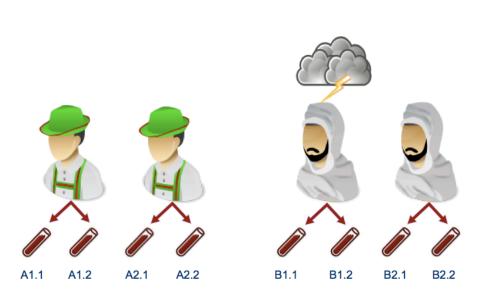


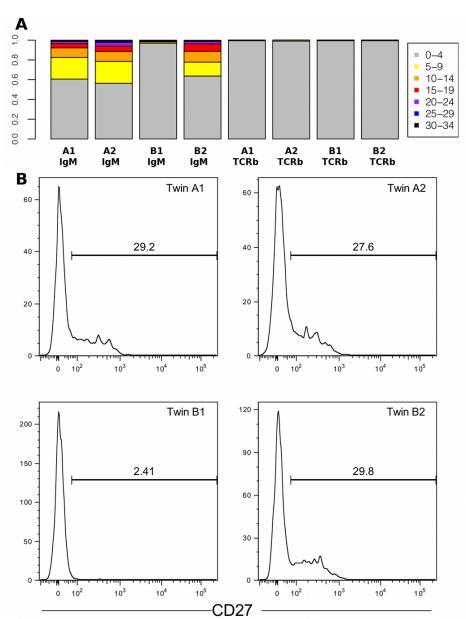


Detecting somatic hypermutation



Lymphocyte depletion in affected twin





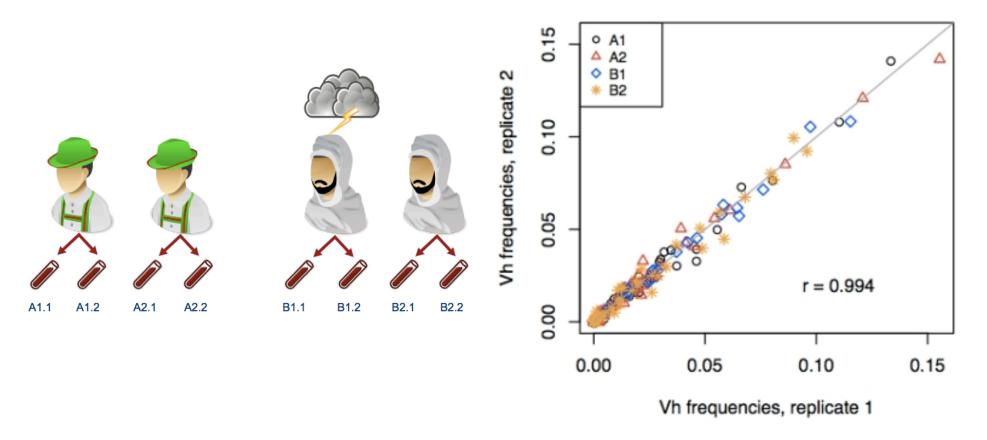
MINIMAL CLONAL OVERLAP

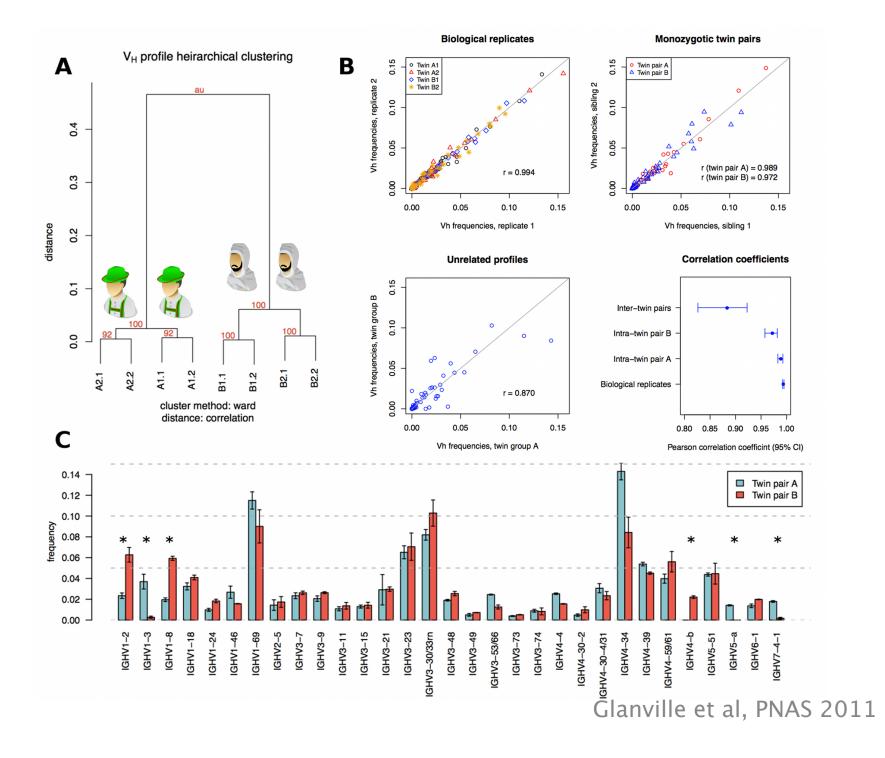
		A1			A2			B1			B2		
		IgM	IgG	IgA	IgM	IgG	IgA	IgM	IgG	IgA	IgM	IgG	IgA
	IgM	9131	308	28						2	2		1
A1	IgG	8%	3761	143							1		1
i.	IgA	0.5%	4%	5604				7			1		2
91	IgM	0.0%	0.0%	0.0%	10096	53	41			2	1		
A2	IgG	0.0%	0.0%	0.0%	4%	1438	87		1				
	IgA	0.0%	0.0%	0.0%	1%	6%	3163				1		
В1	IgM	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	17946	39	23	3		
	IgG	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	6%	652	20			
	IgA	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	1%	3%	1565			
В2	IgM	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	8967	32	38
	IgG	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2%	1414	61
	IgA	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2%	4%	2089

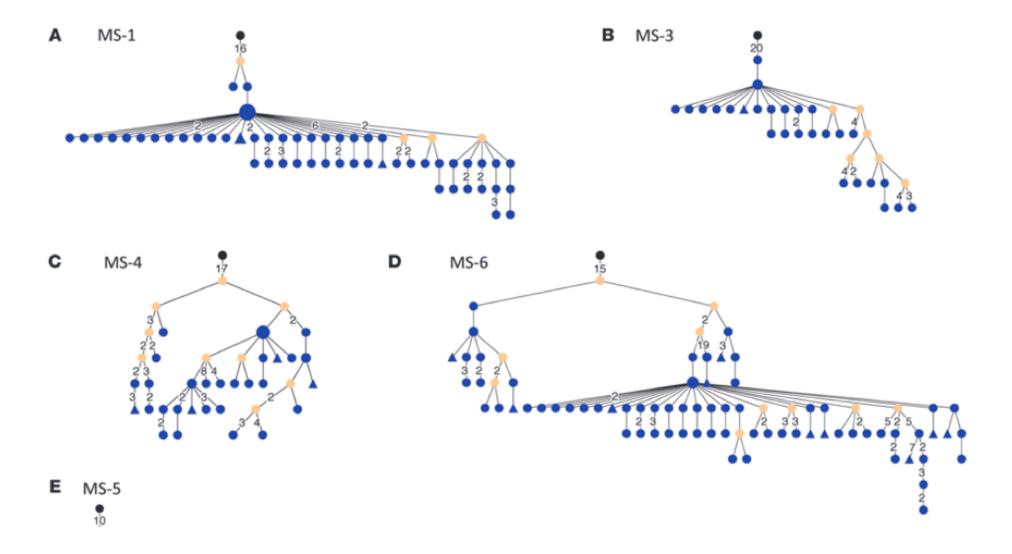
Fig. 4. Unique V(D)J clone overlap between IgM and class-switched IgG and IgA. Unique counts shown in upper diagonal, percent overlap $[(A \cap B)/min(A,B)]$ in the lower diagonal, and unique clones in sample along diagonal. In the upper diagonal, counts for twins A are in green, for twins B are in orange. Log₁₀ heatmap colors sequence counts. Percentage of overlap in the bottom diagonal is dark gray if over 1%, light gray if 0.1–1%, and white if less than 0.1%.

CLONAL NON-REDUNDANCY REMOVES NOISE

Technical replicates







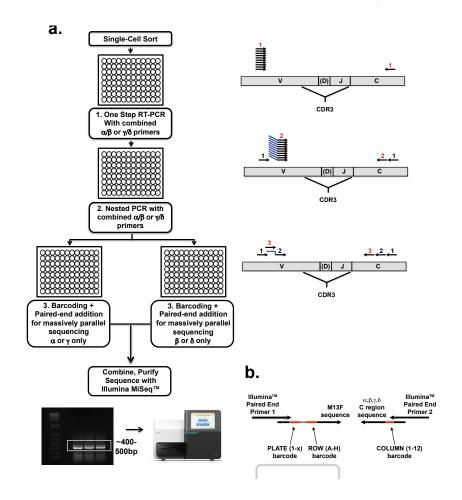
B cell exchange across the blood-brain barrier in multiple sclerosis

H.-Christian von Büdingen,¹ Tracy C. Kuo,² Marina Sirota,² Christopher J. van Belle,¹ Leonard Apeltsin,¹ Jacob Glanville,³ Bruce A. Cree,¹ Pierre-Antoine Gourraud,¹ Amy Schwartzburg,¹ Gabriella Huerta,² Dilduz Telman,² Purnima D. Sundar,² Tyler Casey,¹ David R. Cox,² and Stephen L. Hauser¹

Celiac

Single Cell TCR sequencing

Up to 50 96-well plates in one run



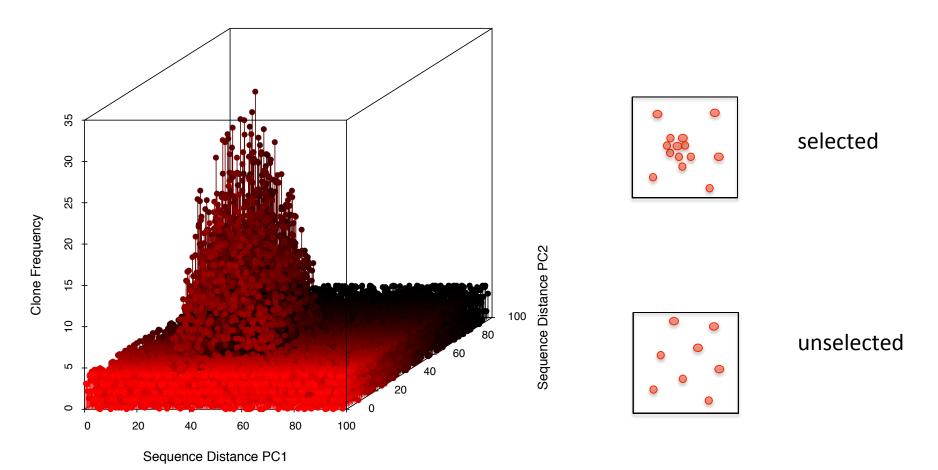
10/01/12	7 million
12/19/12	7 million
01/10/13	4 million
03/13/13	4 million
04/16/13	10 million
06/04/13	7 million

- 1 Custom demultiplexing solution
- 2 VDJFasta algorithm adaptation
- (3) Amazon cloud distribution
- 4 Single cell analysis

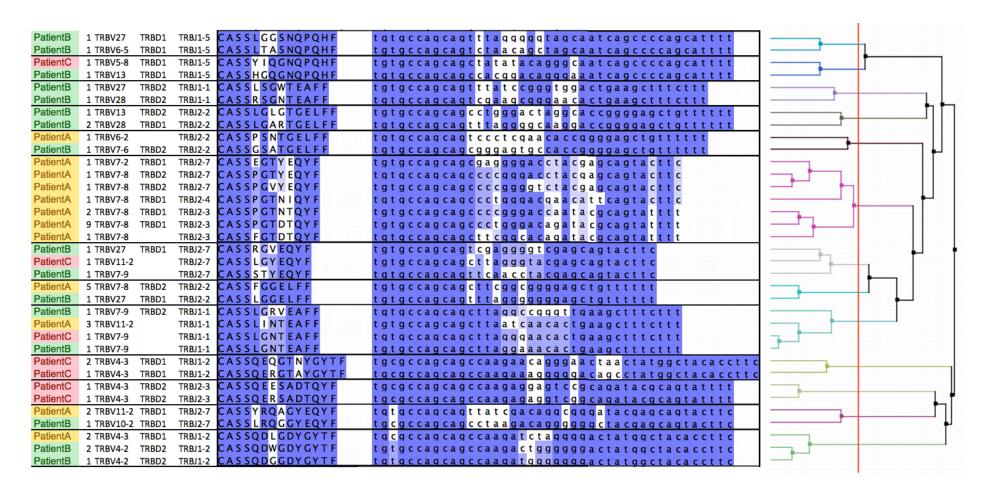
Dietary gluten triggers concomitant activation of CD4⁺ and CD8⁺ $\alpha\beta$ T cells and $\gamma\delta$ T cells in celiac disease

Arnold Han^{a,b}, Evan W. Newell^{b,c}, Jacob Glanville^d, Nielsen Fernandez-Becker^a, Chaitan Khosla^{e,f}, Yueh-hsiu Chien^{b,d}, and Mark M. Davis^{b,d,g,1}

TCR similarity landscape



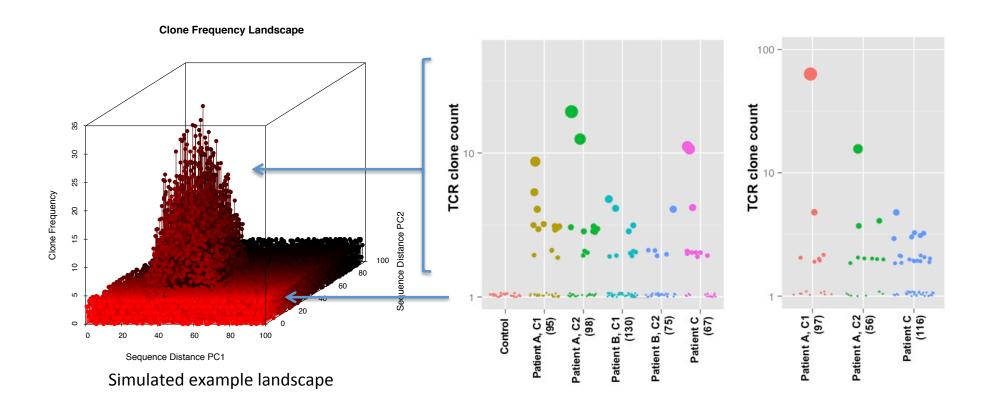
Are these clones more similar to each other than a random handful of T-cells?



Dietary gluten triggers concomitant activation of CD4⁺ and CD8⁺ $\alpha\beta$ T cells and $\gamma\delta$ T cells in celiac disease

Arnold Han^{a,b}, Evan W. Newell^{b,c}, Jacob Glanville^d, Nielsen Fernandez-Becker^a, Chaitan Khosla^{e,f}, Yueh-hsiu Chien^{b,d}, and Mark M. Davis^{b,d,g,1}

There is TCR-driven clonal enrichment in the celiac CD8 samples



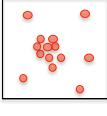
Dispersion and convergence

For selected population

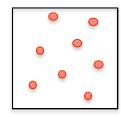
For each paratope in set find distance to next closest sequence

For unselected population

For each paratope in set find distance to next closest sequence Repeat 10,000 times

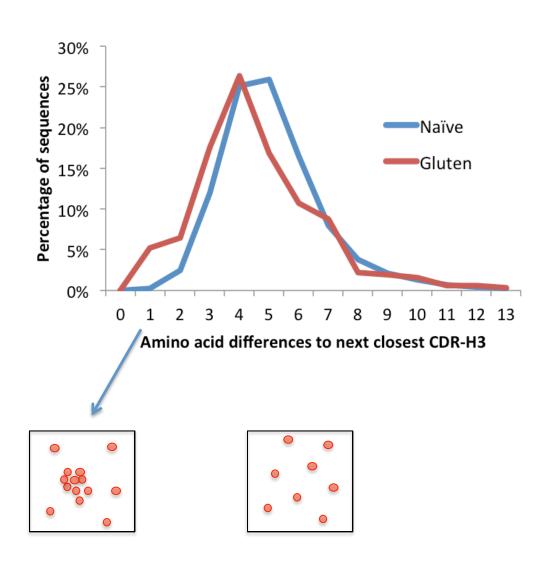


conversion

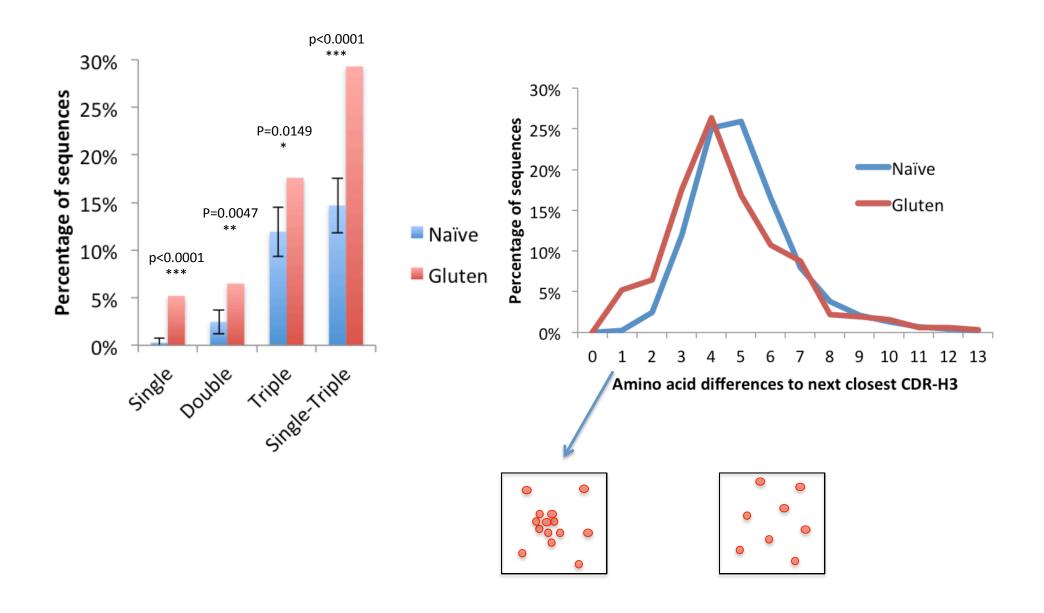


dispersion

Dispersion and convergence



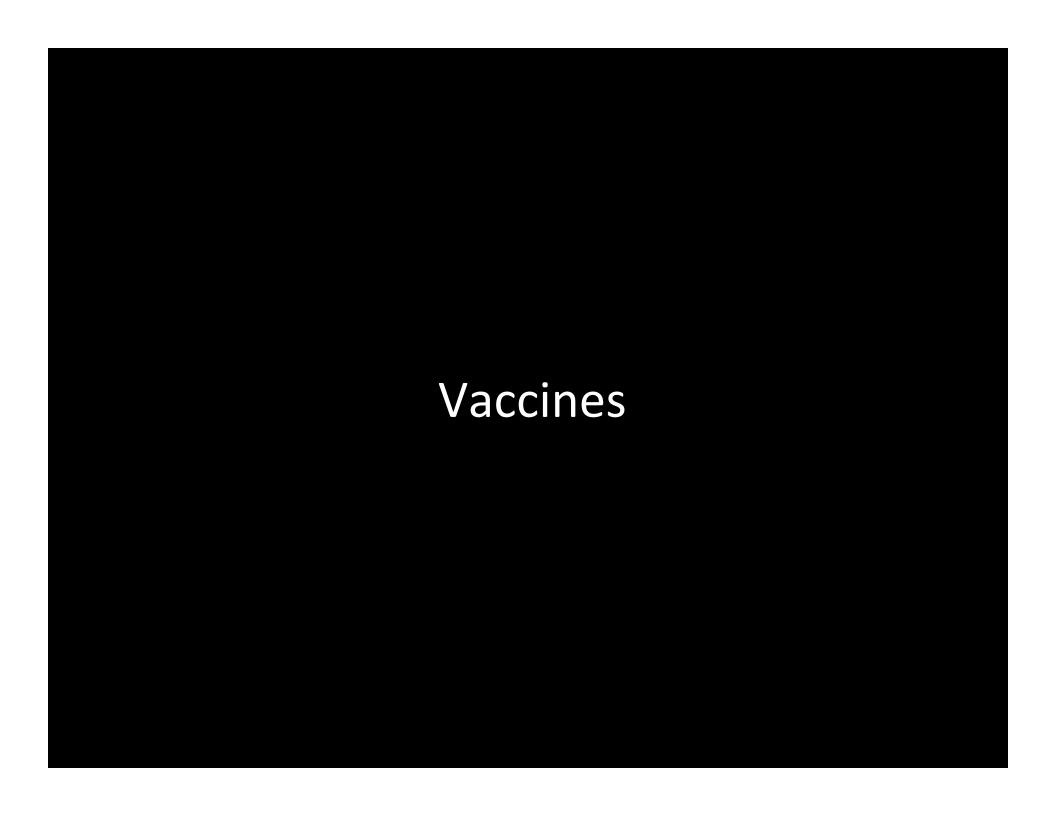
Dispersion and convergence

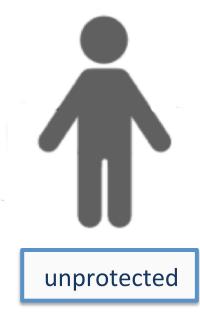


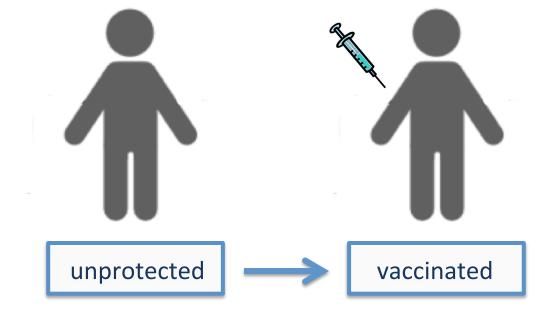
1. Can we detect convergent specificities before antigen is known?

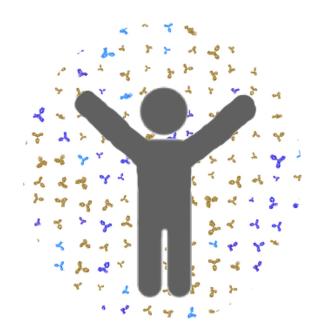
Syndrome X

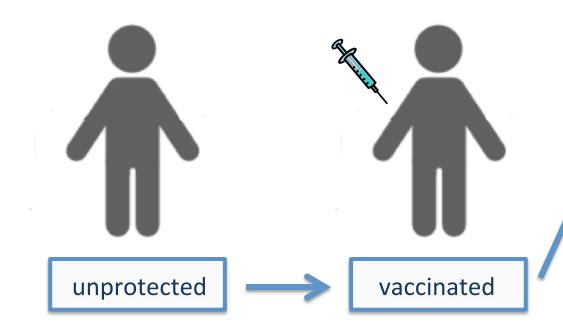
Healthy controls

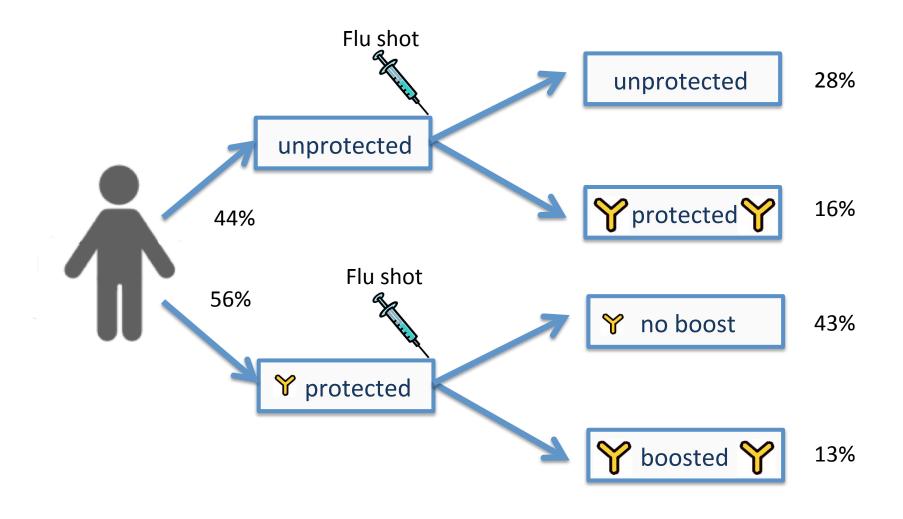






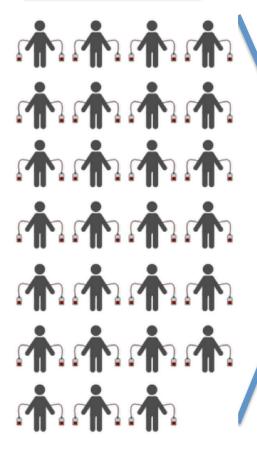


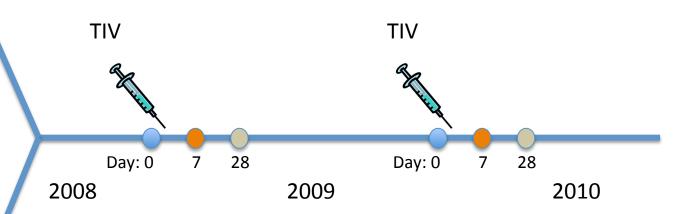




Percentages obtained from 162 assays, 2008-2009 and 2009-2010 flu season

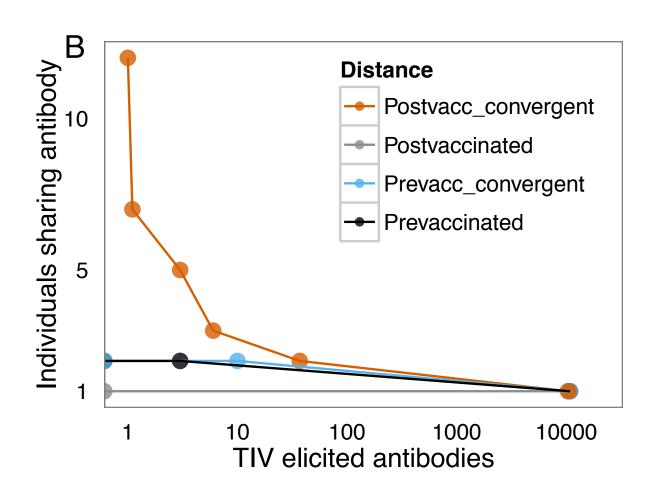
27 subjects

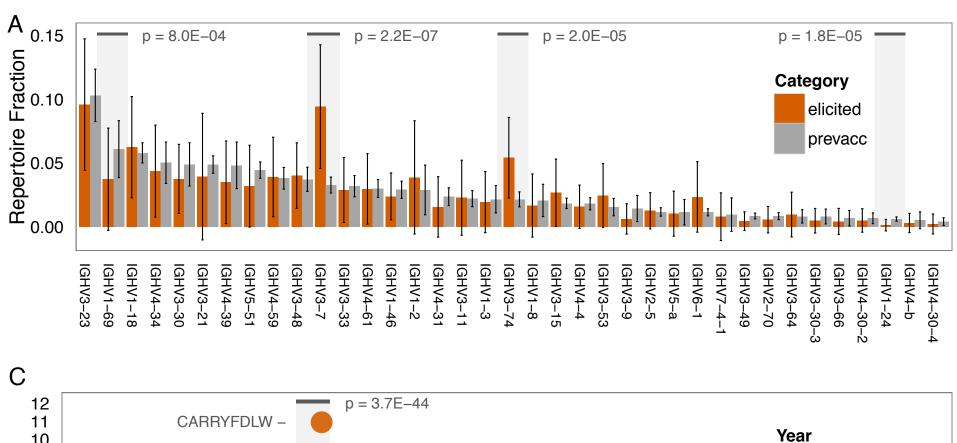


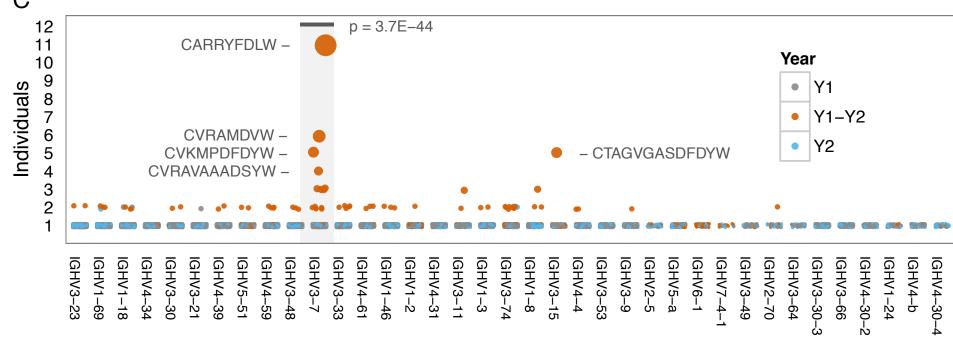


- 27 people vaccinated on 2 consecutive years
- Fv cDNA and gDNA sequenced at day 0, 7, 28
- 50k reads/subject

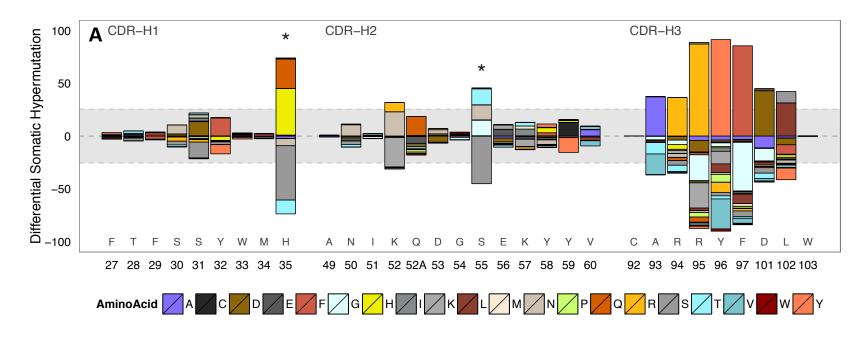
Convergent antibody groups are elicited after TIV vaccination

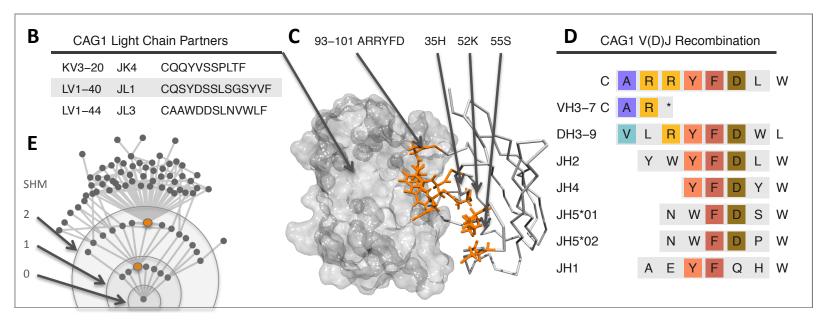


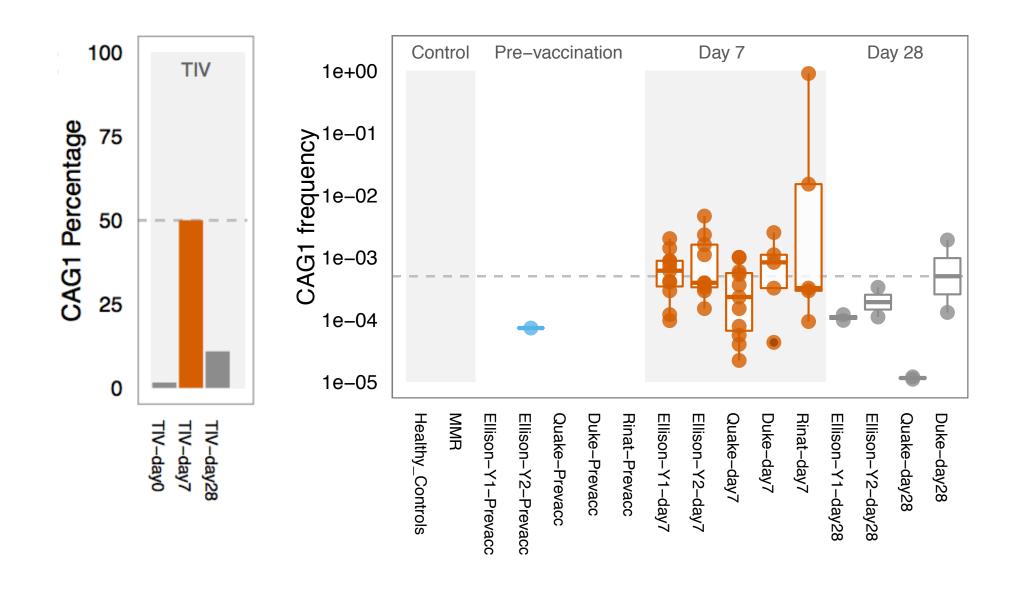


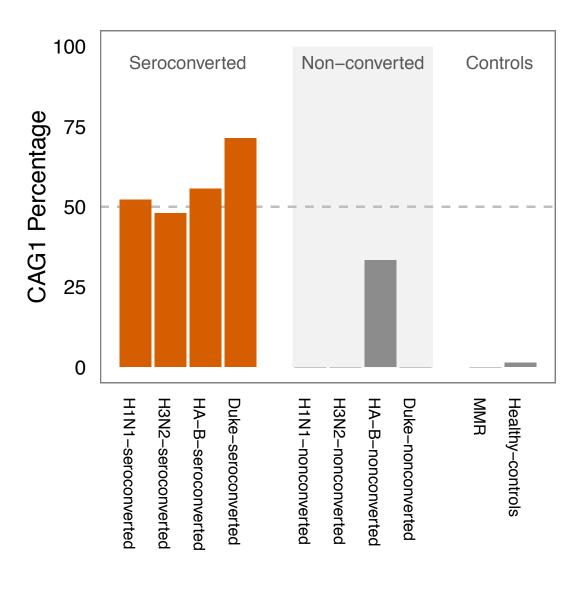


CAG1 – convergent somatic hypermutation and V(D)J rearrangements

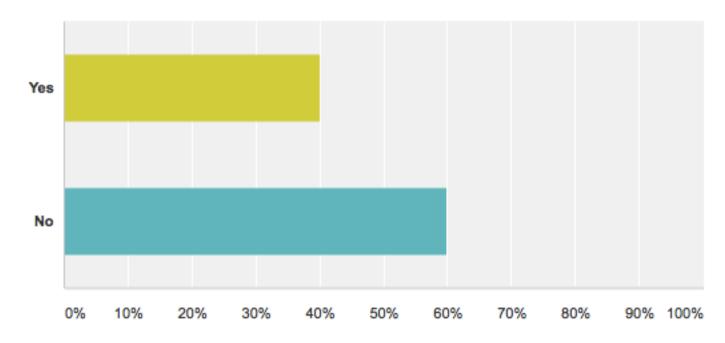








Do you already have a dataset that you would like to work on for this course?



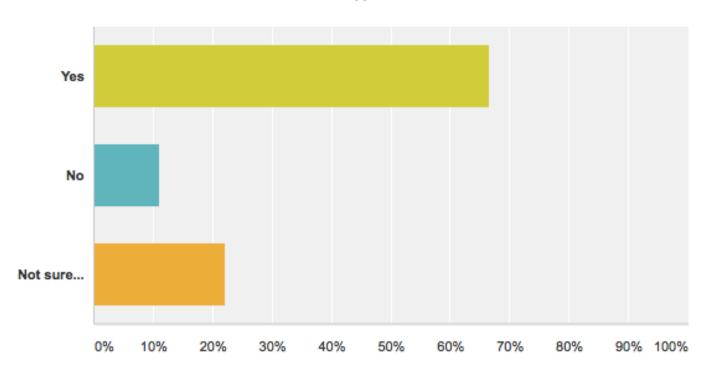
Answer Choices	Responses	~
Yes	40.00%	4
→ No	60.00%	6
Total		10

Repertoire data stores

NCBI Trace Archives
Many labs on campus
Simulated data

Would you be interested in being partnered with a mentor?

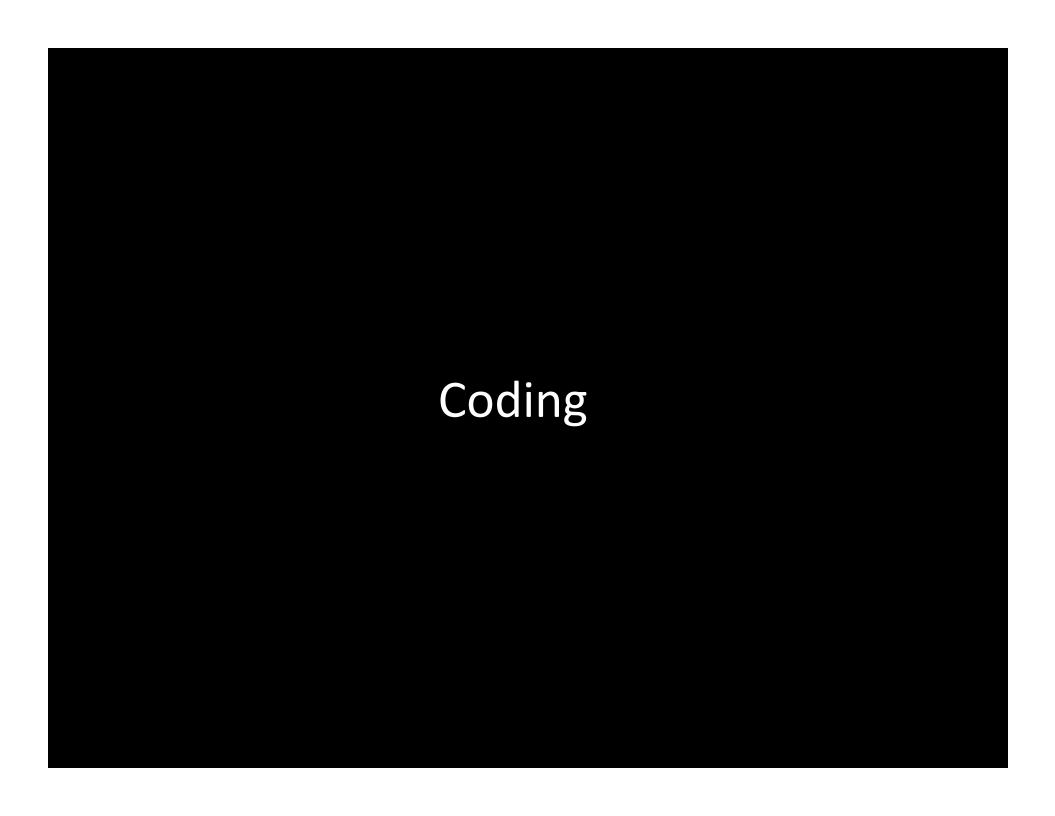
Answered: 9 Skipped: 1



Answer Choices	Responses	~
▼ Yes	66.67%	6
→ No	11.11%	1
■ Not sure	22.22%	2
Total		9

Repertoire labs on campus

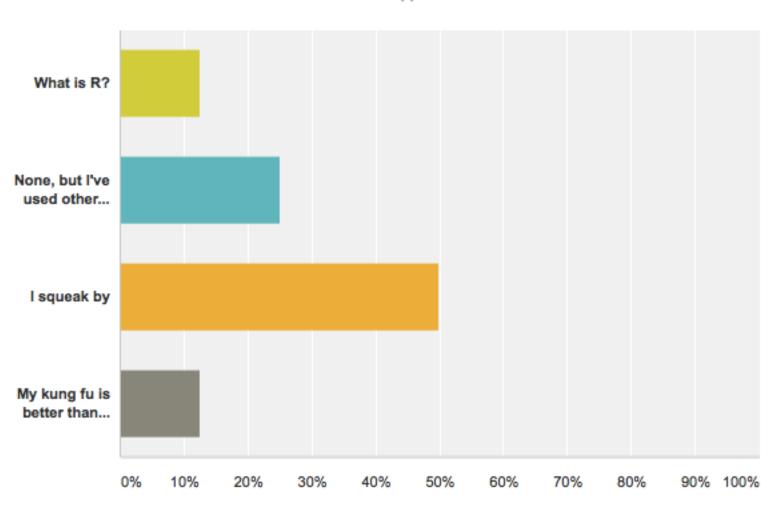
Boyd
Davis
Quake
(many others)



Poll results
Crowdsourcing assignments
Crowdsourcing assignment #1 - figures
Example assignment #1 template & code walk-through
Immunocode

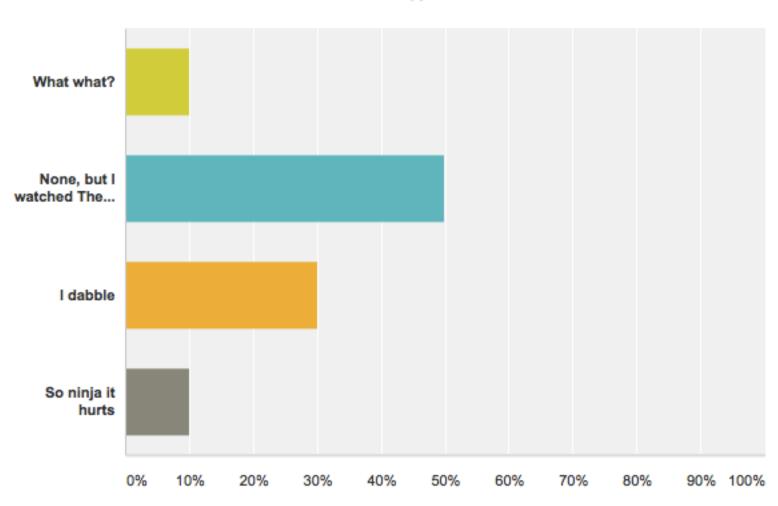
How much experience have you had with R?

Answered: 8 Skipped: 2



How much experience do you have at the command line?

Answered: 10 Skipped: 0



immuno CODE

CONTRIBUTE

CODE

CELLS

CYTOKINES

PATHWAYS

REPERTOIRES

Search

SWIRL: Statistics With InteRactive Learning

by JACOB GLANVILLE on OCTOBER 31, 2013 · LEAVE A COMMENT

"The swirl R package is designed to simultaneously teach users statistics and the R programming language. If you are new to the R programming language, have no fear. We will walk you through each of the steps required to begin using the swirl instructional platform today!" - SWIRL

Continue Reading →

Immunol 310: Mass Cytometry

by JACOB GLANVILLE on OCTOBER 30, 2013 - LEAVE A COMMENT

"Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the [...]

Continue Reading →

Upload New Code

CATEGORIES

Immuno 310

Perl

R

Unix

web-based

POSTS

APRIL 2014									
М	Т	W	Т	F	S	S			
	1	2	3	4	5	6			
7	8	9	10	11	12	13			
14	15	16	17	18	19	20			
21	22	23	24	25	26	27			
28	29	30							
	« Oct								

RECENT POSTS

SWIRL: Statistics With InteRactive Learning

Immunol 310: expression analysis

Crowdsourcing assignments

Wednesday: assignments handed out
All assignments are of a similar theme
Each person gets a slightly different assignment
Collaboration is fine

Following Wednesday: assignments reviewed

Submit working code the night before

Provide code review

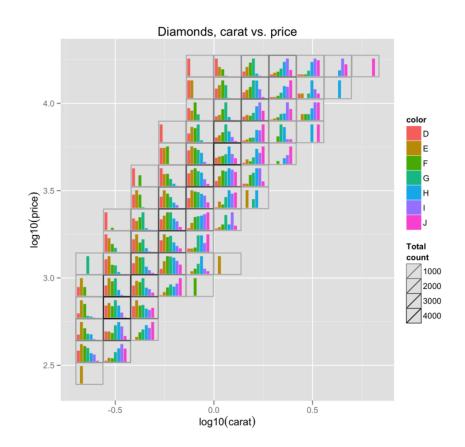
Code should work at command-line

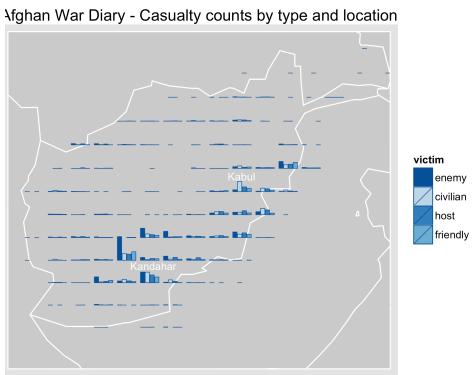
Code should be useful

All code is scored and shared on immunocode

Crowdsourcing assignments

- ① figures with ggplot2
- 2 data reformatting with plyr
- 3 statistics
- 4 clustering
- **5** pattern recognition algorithms
- **6** custom CSI





Geoms

Geoms, short for geometric objects, describe the type of plot you will produce.

geom_abline

Line specified by slope and intercept.

geom area

Area plot.

geom_bar

Bars, rectangles with bases on x-axis

geom bin2d

Add heatmap of 2d bin counts.

geom blank

Blank, draws nothing.

geom_boxplot

Box and whiskers plot.

geom_contour

Display contours of a 3d surface in 2d.

geom_crossbar

Hollow bar with middle indicated by horizontal line.

geom_density

Display a smooth density estimate.

geom_pointrange

An interval represented by a vertical line, with a point in the middle.

geom_polygon

Polygon, a filled path.

geom_quantile

Add quantile lines from a quantile regression.

geom_raster

High-performance rectangular tiling.

geom_rect

2d rectangles.

geom_ribbon

Ribbons, y range with continuous x values.

geom_rug

Marginal rug plots.

geom_segment

Single line segments.

geom_errorbar Error bars.

 geom errorbarh Horizontal error bars

geom_freqpoly Frequency polygon.

geom_hex Hexagon bining.

geom_histogram Histogram

geom hline Horizontal line.

geom_jitter Points, jittered to reduce overplotting.

geom line Connect observations, ordered by x value.

geom_linerange An interval represented by a vertical line.

geom_segment Single line segments.

geom smooth Add a smoothed conditional mean.

geom_step Connect observations by stairs.

geom_text Textual annotations.

geom_tile Tile plane with rectangles.

geom_violin Violin plot.

geom_vline Line, vertical.

ggplot2: assignments

1. Area

8. Quantile

2. Bar

9. Dotplot

3. Boxplot

10. Histogram

4. Contour

11. Line

5. Density

12. Smooth

6. jitter

13. Violin

7. Pointrange

14+: something evil

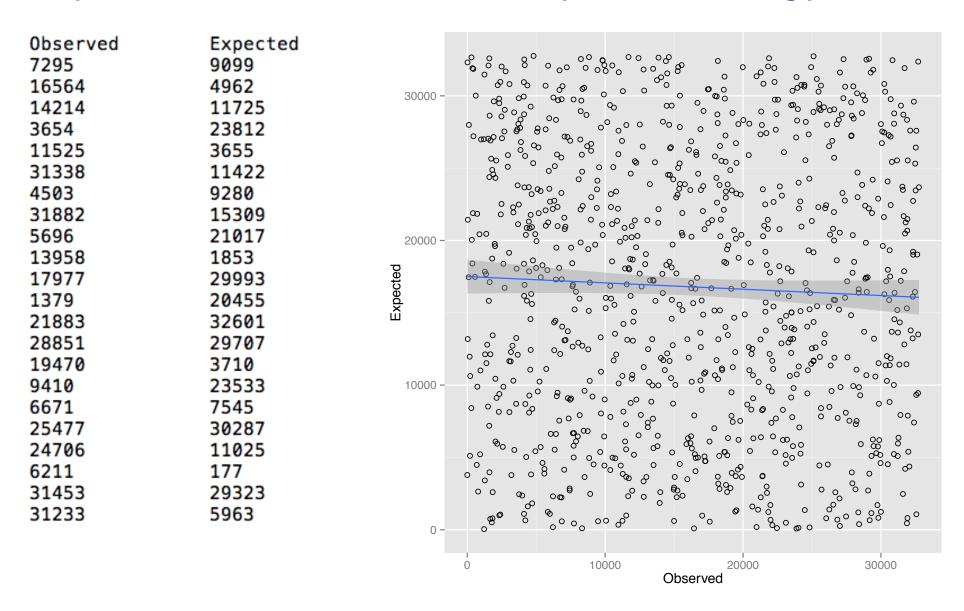
(Handed out by order in sign-in sheet)

http://docs.ggplot2.org

```
Author: Jacob Glanville
# Contact: jakeq@stanford.edu
# The purpose of this code is to generate a scatterplot using ggplot.
# Inputs: a tab-delimited file of X and Y coordinates
# Outputs: a scatterplot
library(ggplot2)
cmd_args = commandArgs();
myfile = cmd args[6]
mytable=read.table(myfile, header=TRUE)
output_pdf=paste("ggplot-scatter-",myfile,".pdf",sep="")
pdf(output pdf, height=7, width=7)
ggplot(mytable, aes(x=0bserved, y=Expected)) +
  geom point(shape=1) + # Use hollow circles
  geom_smooth(method=lm) # Add linear regression line
                   # (by default includes 95% confidence region)
dev.off()
```

Input File (data.txt)

Output File (deluxe-fig.pdf)



Command: Rscript ggplot-scatter.R data.txt

Questions?