Adaptive repertoires

Jacob Glanville

Wednesday format:

Applied Methods Lecture (30-60 minutes)

Code review
Round-table discussion

UC Berkeley	Molecular and Cell Biology BA program Genetic Genomics Development Thomson Population Genetics Lab Sjolander Berkeley Phylogenomics Lab
Pfizer Inc.	Principal Scientist Algorithm Development Antibody engineering Repertoire sequencing Antibody library design Precision medicine biomarker discovery
Distributed Bio	
Chief Science Officer	
Cloud-based repertoire analysis platforms	
High throughput sequencing algorithms	

Title / Author

Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire
J Glanville, W Zhai, J Berka, D Telman, G Huerta, GR Mehta, I Ni, L Mei,
Proceedings of the National Academy of Sciences 106 (48), 20216-20221

Berkeley Phylogenomics Group web servers: resources for structural

phylogenomic analysis

JG Glanville, D Kirshner, N Krishnamurthy, K Sjölander
Nucleic acids research 35 (suppl 2), W27-W32
Synthetic antibodies designed on natural sequence landscapes
W Zhai, J Glanville, M Fuhrmann, L Mei, I Ni, PD Sundar, T Van Blarcom, ..
Journal of molecular biology 412 (1), 55-71
Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation
J Glanville, TC Kuo, HC von Büdingen, L Guey, J Berka, PD Sundar, ..
Proceedings of the National Academy of Sciences 108 (50), 20066-2007
B cell exchange across the blood-brain barrier in multiple sclerosis
HC von Büdingen, TC Kuo, M Sirota, CJ van Belle, L Apeltsin, J Glanville, ..
The Journal of clinical investigation 122 (12), 4533
Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential
CM Mahon, MA Lambert, J Glanville, JM Wade, BJ Fennell, MR Krebs, ..
Journal of molecular biology 425 (10), 1712-1730
The restricted DH gene reading frame usage in the expressed human antibody repertoire is selected based upon its amino acid content
J Benichou, J Glanville, ETL Prak, R Azran, TC Kuo, J Pons, C Desmarais, ...
The Journal of Immunology 190 (11), 5567-5577
Dietary gluten triggers concomitant activation of CD4+ and CD8+ $\alpha \beta$ T cells and $ү$ ү T cells in celiac disease
A Han, EW Newell, J Glanville, N Fernandez-Becker, C Khosla, Y Chien, ...
Proceedings of the National Academy of Sciences 110 (32), 13073-13078
The antibody mining toolbox: An open source tool for the rapid analysis of antibody repertoires
S D'Angelo, J Glanville, F Ferrara, L Naranjo, CD Gleasner, X Shen, ..
mAbs 6 (1), 160-172

Multi step selection in $\lg \mathrm{H}$ chains is initially focused on CDR3 and then on

other CDR regions

G Liberman, J Benichou, L Tsaban, J Glanville, Y Louzoun
Frontiers in immunology 4

Estimate of Within Population Incremental Selection Through Branch Imbalance

The antibody mining toolbox

S D'angelo, J Glanville, F Ferrara, L Naranjo, CD Gleasner, X Shen, ..
Staphylococcus aureus specific antibodies and uses thereof
DL Foletti, JFC Riggers, JEG Glanville, LMB Shaughnessy, DL Shelton, ...
US Patent App. 13/719,214

ANTI-NOTCH-1 ANTIBODIES

A RAJPAL, DM STONE, JEG GLANVILLE, W ZHA
WO Patent 2,012,080,891

Adaptive repertoires

Affinity maturation

Biochemical liability elimination

Biochemical liability elimination

Biochemical liability elimination
Off-target binding removal

Bioengineering: 8-12 months

Bioengineering: 8-12 months

Antibody repertoires

A population of distinct antibodies with a variety of binding specificities

Each naïve B-cell generates and displays a distinct binding surface

654 human donors

Sequencing Repertoires

Amplifying repertoires from a synthetic library

Require long reads without assembly

Multiplex primer design \& primer bias

http://www.immunocode.org/immunol-310-3-antibody-repertoire-analysis/

Mitigating primer bias with 5 ‘RACE

- Singleplex 5’RACE PCR reaction setup for each constant domain primer
- 5'RACE products gel-purified and pooled for high-throughput sequencing
- Eliminates primer performance bias

Glanville et al, PNAS 2011
http://www.immunocode.org/immunol-310-3-antibody-repertoire-analysis/

2. VDJFasta
 brouptlo pou br pacosyanes
 Sommary Files aevievs Swoport was HostedApps: Disonsion
 * 5.0 Surs (70)
 +4 Dowilads mes.an
 B Last Updace 2013-04-15

Description
fiointornutict Perf extemion for the analyas of antbody rariabie doman mpetoien mammalan speptoies suqumces otesined ether by Sange or 454 sequencing the Olamile, Zhis, Berka ef is, PTuS 2009

VDJFasta

Avoiding germline mis-classification

Ask "what are the odds that mutations in very specific positions would cause me to erroneously classify this sequence?"

Germline classification accuracy

Table S4. V(D)J classification accuracy benchmark: V segements

Mutations	V-seg (\%)	V-seg errors (\%)
1	100	0.00
5	100	0.00
10	100	0.00
15	100	0.00
20	100	0.00
25	99.9	0.01
30	99.8	0.02

V segments are classified by VDJFasta probabilistic classifier (1). This table illustrates the percentage of accuracy in v-segment classification (column 2) and error (column 3) with variable number of mutations in the v-gene (column 1). Classification quality was determined by simulating V(D)J rearrangements, simulating substitutions in the IMGT germ-line reference sequences, and then attempting classification. Classification was accurate if the correct germ line was identified. Classification was in error when the wrong germ line was classified. Classification was "ambiguous" when the correct germ line could not be determined with confidence. Erroneous classification remained below 0.3% for all simulations, indicating that sequences could be underclassified, but were rarely being incorrectly classified. Simulations were performed in the VDJFasta tool "fasta-vdj-sim.pl." Parameters for V were as follows: expectation value cutoff $1 \mathrm{e}-10,1 \mathrm{e}-2,1 \mathrm{e}-3,1 \mathrm{e}-4$; ambiguous-hit score (1) $1 \mathrm{e}-3,1 \mathrm{e}-1,1 \mathrm{e}-3,1 \mathrm{e}-3$; minimum segment alignment length (1) $100,8,35,30$.

Table S5. V(D)J classification accuracy benchmark: D and J segments

Mutations	D-seg (\%)	J-seg (\%)	D-seg errors (\%)	J-seg errors (\%)
0	96.3	100	0.21	0.00
1	92.9	99.9	0.13	0.00
2	78.1	99.7	0.34	0.00
3	62.9	99.6	0.24	0.00
4	56.2	99.0	0.17	0.02
5	47.8	98.5	0.23	0.09
6	36.5	96.9	0.27	0.22

$\mathrm{V}(\mathrm{D}) \mathrm{J}$ segments are classified by VDJFasta probabilistic classifier (1). This table illustrates the percentage of accuracy in D-and J-segment classification (column 2 and 3) and error (column 3 and 4) with variable number of mutations in each gene segment (column 1). D-segment classification additionally requires that both a V_{H} and J_{H} segment have been identified, and that the putative D-segment classification is found between them on the sequence, with up to 8-bp overlap tolerated to account for overalignment of segments to the query. Classification quality was determined by simulating $V(D) J$ rearrangements, simulating substitutions in IMGT germ-line reference sequences, and then attempting classification. Classification was accurate if the correct germ line was identified. Classification was in error when the wrong germ line was classified. Classification was "ambiguous" when the correct germ line could not be determined with confidence. Ambiguous classification rates increased rapidly for D-segments as more SHM was introduced, suggesting that D-segment analysis in antigen-experienced compartments would be challenging. Erroneous classification remained below 0.3% for all simulations, indicating that sequences could be underclassified, but were rarely being incorrectly classified. Simulations were performed in the VDJFasta tool "fasta-vdj-sim.pl." Parameters for D and J, CH1 were as follows: expectation value cutoff $1 \mathrm{e}-10,1 \mathrm{e}-2,1 \mathrm{e}-3,1 \mathrm{e}-4$; ambiguous-hit score (1) $1 \mathrm{e}-$ $3,1 \mathrm{e}-1,1 \mathrm{e}-3,1 \mathrm{e}-3$; minimum segment alignment length (1) $100,8,35,30$.

CDR recognition with profile HMMs

HMM CDR recognition was evaluated structurally
-779 non-redundant structures were superposed
Sequences of references structures were extracted

- Reference structure sequences were aligned to HMM
- HMM-Predicted boundary positions were compared to structure

HMM CDR recognition was highly accurate -99.74\% boundary recognition success

- Two miscalls were both in C-terminal H3
- One was a catalytic antibody

Glanville et al, PNAS 2009

 flffes 1
安齐

 Wれゆ

Repertoire
Clonal lineages

Can we do something smarter than alignment distance?

CDR-H3 similarity for specificity

Xu, John L., and Mark M. Davis. "Diversity in the CDR3 Region of VH Is Sufficient for Most Antibody Specificities." Immunity 13.1 (2000): 37-45.

Empirical clone distance cutoff determination

Clone clustering and error clustering

$$
\ell
$$

$10 \wedge 14$
$10 \wedge 12$
$10 \wedge 11$
$10 \wedge 10$
$10 \wedge 8$
r

Individual adults only sample a small part of the antibody repertoire
$10 \wedge 13$ Theoretical IgH naïve V(D)J repertoire

Redundant clones constrain library diversity

Twins

https://www.youtube.com/watch?v=wNW0vZiaMuA

Detecting somatic hypermutation

Glanville et al, PNAS 2011

Lymphocyte depletion in affected twin distributed bio

	A1			A2			B1			B2		
	IgM	IgG	IgA									
A1	9131	308	28						2	2		1
	8\%	3761	143							1		1
	0.5\%	4\%	5604				7			1		2
$\begin{array}{\|cc\|} & \text { IgM } \\ \text { A2 } & \text { IgG } \\ & \text { Ig } A \end{array}$	0.0\%	0.0\%	0.0\%	10096	53	41			2	1		
	0.0\%	0.0\%	0.0\%	4\%	1438	87		1				
	0.0\%	0.0\%	0.0\%	1\%	6\%	3163				1		
$\begin{array}{rr}\text { B1 } & \text { IgG } \\ & \text { Ig } A\end{array}$	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	17946	39	23	3		
	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	6\%	652	20			
	0.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	1\%	3\%	1565			
B2 $\begin{aligned} & \text { IgG } \\ & \text { IgA }\end{aligned}$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	8967	32	38
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	2\%	1414	61
	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	2\%	4\%	2089

Fig. 4. Unique V(D)J clone overlap between IgM and class-switched IgG and $\lg A$. Unique counts shown in upper diagonal, percent overlap [(A $\cap B) / m i n(A, B)]$ in the lower diagonal, and unique clones in sample along diagonal. In the upper diagonal, counts for twins A are in green, for twins B are in orange. $\log _{10}$ heatmap colors sequence counts. Percentage of overlap in the bottom diagonal is dark gray if over 1%, light gray if $0.1-1 \%$, and white if less than 0.1%.

CLONAL NON-REDUNDANCY REMOVES NOISE

Technical replicates

Glanville et al, PNAS 2011

B cell exchange across the blood-brain barrier in multiple sclerosis
H.-Christian von Büdingen, ${ }^{1}$ Tracy C. Kuo, ${ }^{2}$ Marina Sirota, ${ }^{2}$ Christopher J. van Belle, ${ }^{1}$ Leonard Apeltsin, ${ }^{1}$ Jacob Glanville, ${ }^{3}$ Bruce A. Cree, ${ }^{1}$ Pierre-Antoine Gourraud,
Amy Schwartzburg, ${ }^{1}$ Gabriella Huerta, ${ }^{2}$ Dilduz Telman, ${ }^{2}$ Purnima D. Sundar, ${ }^{2}$
Tyler Casey, David R. Cox, ${ }^{2}$ and Stephen L. Hauser ${ }^{1}$

Celiac

Single Cell TCR sequencing

Up to 5096 -well plates in one run

10/01/12	7 million
$12 / 19 / 12$	7 million
$01 / 10 / 13$	4 million
$03 / 13 / 13$	4 million
$04 / 16 / 13$	10 million
$06 / 04 / 13$	7 million

(1) Custom demultiplexing solution
(2) VDJFasta algorithm adaptation
(3) Amazon cloud distribution
(4) Single cell analysis

Dietary gluten triggers concomitant activation of CD4 ${ }^{+}$ and CD8 ${ }^{+} \boldsymbol{\alpha} \beta$ T cells and $\boldsymbol{\gamma} \boldsymbol{\delta}$ T cells in celiac disease
Arnold Han ${ }^{\text {a,b }}$, Evan W. Newell ${ }^{\text {b,c }}$, Jacob Glanville ${ }^{\text {d }}$, Nielsen Fernandez-Becker ${ }^{\text {a }}$, Chaitan Khosla ${ }^{e, f}$, Yueh-hsiu Chien ${ }^{\text {b,d }}$, and Mark M. Davis ${ }^{\text {b,d,g,1 }}$

TCR similarity landscape

selected

unselected

Are these clones more similar to each other than a random handful of T-cells?

Dietary gluten triggers concomitant activation of CD4 ${ }^{+}$ and CD8 ${ }^{+} \alpha \beta$ T cells and $\gamma \delta \mathrm{T}$ cells in celiac disease

Arnold Han ${ }^{\text {a,b }}$, Evan W. Newell ${ }^{\text {b,c }}$, Jacob Glanville ${ }^{\text {d }}$, Nielsen Fernandez-Becker ${ }^{\text {a }}$, Chaitan Khosla ${ }^{\text {e,f }, ~ Y u e h-h s i u ~ C h i e n ~}{ }^{\text {b,d }}$, and Mark M. Davis ${ }^{\text {b.d.g. }}$

There is TCR-driven clonal enrichment in the celiac CD8 samples

Dispersion and convergence

For selected population
For each paratope in set find distance to next closest sequence
For unselected population
For each paratope in set find distance to next closest sequence Repeat 10,000 times

conversion

dispersion

Dispersion and convergence

Dispersion and convergence

1. Can we detect convergent specificities before antigen is known?

Vaccines

unprotected

Percentages obtained from 162 assays, 2008-2009 and 2009-2010 flu season

27 subjects

 in: \mathfrak{m} in

TIV

- 27 people vaccinated on 2 consecutive years
- Fv cDNA and gDNA sequenced at day 0, 7, 28
- 50k reads/subject

Convergent antibody groups are elicited after TIV vaccination

@ Boyd Lab

C

CAG1 - convergent somatic hypermutation and $\mathrm{V}(\mathrm{D})$) rearrangements

Do you already have a dataset that you would like to work on for this course?

Answered: 10 Skipped: 0

Answer Choices	Responses	
- Yes	$\mathbf{4 0 . 0 0 \%}$	4
- No	$\mathbf{6 0 . 0 0 \%}$	6
Total		10

Repertoire data stores

NCBI Trace Archives
Many labs on campus
Simulated data

Would you be interested in being partnered with a mentor?

Answered: 9 Skipped: 1

Answer Choices	Responses	
- Yes	$\mathbf{6 6 . 6 7 \%}$	6
- No	$\mathbf{1 1 . 1 1 \%}$	1
- Not sure...	$\mathbf{2 2 . 2 2 \%}$	2
Total		9

Repertoire labs on campus

Boyd
Davis
Quake

(many others)

Coding

Poll results
Crowdsourcing assignments
Crowdsourcing assignment \#1 - figures
Example assignment \#1 template \& code walk-through Immunocode

How much experience have you had with \mathbf{R} ?

Answered: 8 Skipped: 2

How much experience do you have at the command line?

Answered: 10 Skipped: 0

immuno CODE

CONTRIBUTE CODE CELLS CYTOKINES PATHWAYS REPERTOIRES

SWIRL: Statistics With InteRactive Learning

"The swirl R package is designed to simultaneously teach users statistics and the R programming language. If you are new to the R programming language, have no fear.
We will walk you through each of the steps required to begin using the swirl instructional platform today!" - SWIRL

Continue Reading \rightarrow

Immunol 310: Mass Cytometry

by JACOB GLANVILLE ON OCTOBER 30, 2013 . LEAVE A COMMENT

"Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the [...]

Continue Reading \rightarrow

Upload New Code

CATEGORIES
Immuno 310
Perl
R
Unix
web-based

POSTS	APRIL 2014						
M	T	W	T	F	S	S	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30					
	«Oct						

RECENT POSTS

SWIRL: Statistics With InteRactive Learning

Crowdsourcing assignments

Wednesday: assignments handed out
All assignments are of a similar theme
Each person gets a slightly different assignment
Collaboration is fine

Following Wednesday: assignments reviewed
Submit working code the night before
Provide code review
Code should work at command-line
Code should be useful
All code is scored and shared on immunocode

Crowdsourcing assignments

(1) figures with ggplot2
(2) data reformatting with plyr
(3) statistics
(4) clustering
(5) pattern recognition algorithms
(6) custom CSI

Afghan War Diary - Casualty counts by type and location

Geoms

Geoms, short for geometric objects, describe the type of plot you will produce.

- geom_abline

Line specified by slope and intercept.

- geom_area

Area plot.

- geom_bar

Bars, rectangles with bases on x -axis

- geom_bin2d

Add heatmap of $2 d$ bin counts.

- geom_blank

Blank, draws nothing.

- geom_boxplot

Box and whiskers plot.

- geom_contour

Display contours of a 3d surface in 2d.

- geom_crossbar

Hollow bar with middle indicated by horizontal line.

- geom_density

Display a smooth density estimate.

- geom_pointrange

An interval represented by a vertical line, with a point in the middle.

- geom_polygon

Polygon, a filled path.

- geom_quantile

Add quantile lines from a quantile regression.

- geom_raster

High-performance rectangular tiling.

- geom_rect

2d rectangles.

- geom_ribbon

Ribbons, y range with continuous x values.

- geom_rug

Marginal rug plots.

- geom_segment

Single line segments.

- geom_dotplot Dot plot
- geom_errorbar Error bars.
- geom_errorbarh Horizontal error bars
- geom_freqpoly

Frequency polygon.

- geom_hex

Hexagon bining.

- geom_histogram

Histogram

- geom_hline

Horizontal line.

- geom_jitter

Points, jittered to reduce overplotting.

- geom_line

Connect observations, ordered by x value.

- geom_linerange

An interval represented by a vertical line.

- geom_segment

Single line segments.

- geom_smooth

Add a smoothed conditional mean.

- geom_step

Connect observations by stairs.

- geom_text

Textual annotations.

- geom_tile

Tile plane with rectangles.

- geom_violin Violin plot.
- geom_vline

Line, vertical.

ggplot2: assignments

\author{

1. Area
 8. Quantile
 2. Bar
 3. Boxplot
 4. Contour
 5. Density
 6. jitter
 7. Pointrange
 9. Dotplot
 10. Histogram
 11. Line
 12. Smooth
 13. Violin
 14+: something evil
 (Handed out by order in sign-in sheet)
}
http://docs.ggplot2.org
```
# Author: Jacob Glanville
# Contact: jakeg@stanford.edu
# The purpose of this code is to generate a scatterplot using ggplot.
# Inputs: a tab-delimited file of X and Y coordinates
# Outputs: a scatterplot
############################### Libraries ###############################
library(ggplot2)
############################### Arguments ###############################
cmd_args = commandArgs();
myfile = cmd_args[6]
############################### Inputs #################################
mytable=read.table(myfile, header=TRUE)
############################### Outputs ################################
output_pdf=paste("ggplot-scatter-",myfile,".pdf",sep="")
pdf(output_pdf, height=7, width=7)
ggplot(mytable, aes(x=Observed, y=Expected)) +
    geom_point(shape=1) + # Use hollow circles
    geom_smooth(method=lm) # Add linear regression line
    # (by default includes 95% confidence region)
dev.off()
```

Input File (data.txt)

Observed	Expected
7295	9099
16564	4962
14214	11725
3654	23812
11525	3655
31338	11422
4503	9280
31882	15309
5696	21017
13958	1853
17977	29993
1379	20455
21883	32601
28851	29707
19470	3710
9410	23533
6671	7545
25477	30287
24706	11025
6211	177
31453	29323
31233	5963

Output File (deluxe-fig.pdf)

Command: Rscript ggplot-scatter.R data.txt

Questions?

